Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Prenatal valproate exposure and adverse neurodevelopmental outcomes: Does sex matter?
    Honybun, E ; Thwaites, R ; Malpas, CB ; Rayner, G ; Anderson, A ; Graham, J ; Hitchcock, A ; O'Brien, TJ ; Vajda, FJE ; Perucca, P (WILEY, 2021-03)
    OBJECTIVE: Prenatal exposure to the antiepileptic drug (AED) valproic acid (VPA) is associated with an increased risk of impaired postnatal neurodevelopment, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). We aimed to evaluate the influence of sex and drug dosage on the association between prenatal VPA exposure and postnatal behavioral outcomes. METHODS: The Australian Pregnancy Register of AEDs was interrogated to identify children aged 4-11 years prenatally exposed to AEDs. Parents reported on their child's behavior using the Autism Spectrum Quotient-Children's Version and the National Institute for Children's Health Quality Vanderbilt Assessment Scale for ADHD. General linear mixed-effects models were used to investigate the relationship between clinicodemographic variables and psychometric scores. RESULTS: A total of 121 children were studied: 54 prenatally exposed to VPA (28 males, 26 females; mean dose ± SD: 644 ± 310 mg/day) and 67 exposed to other AEDs. There was a main effect of sex showing higher ASD scores in males compared to females (p = .006). An interaction between sex and VPA exposure revealed that males had higher ASD symptoms among children exposed to AEDs other than VPA (p = .01); however, this typical sex dynamic was not evident in VPA-exposed children. There was no evidence of any dose-response relationship between VPA exposure and ASD symptoms. Males had higher ADHD scores compared to females, but there was no evidence for a link between ADHD symptoms and VPA exposure. SIGNIFICANCE: Prenatal VPA exposure seems to negate the usual male sex-related predominance in the incidence of ASD. These initial findings deepen the concept of VPA as a "behavioral teratogen" by indicating that its effect might be influenced by sex, with females appearing particularly sensitive to the effects of VPA. No association between VPA doses and adverse postnatal behavioral outcomes was detected, possibly related to the low VPA doses used in this study.
  • Item
    Thumbnail Image
    Antiepileptic Drug Teratogenicity and De Novo Genetic Variation Load
    Perucca, P ; Anderson, A ; Jazayeri, D ; Hitchcock, A ; Graham, J ; Todaro, M ; Tomson, T ; Battino, D ; Perucca, E ; Ferri, MM ; Rochtus, A ; Lagae, L ; Canevini, MP ; Zambrelli, E ; Campbell, E ; Koeleman, BPC ; Scheffer, IE ; Berkovic, SF ; Kwan, P ; Sisodiya, SM ; Goldstein, DB ; Petrovski, S ; Craig, J ; Vajda, FJE ; O'Brien, TJ (WILEY, 2020-06)
    OBJECTIVE: The mechanisms by which antiepileptic drugs (AEDs) cause birth defects (BDs) are unknown. Data suggest that AED-induced BDs may result from a genome-wide increase of de novo variants in the embryo, a mechanism that we investigated. METHODS: Whole exome sequencing data from child-parent trios were interrogated for de novo single-nucleotide variants/indels (dnSNVs/indels) and de novo copy number variants (dnCNVs). Generalized linear models were applied to assess de novo variant burdens in children exposed prenatally to AEDs (AED-exposed children) versus children without BDs not exposed prenatally to AEDs (AED-unexposed unaffected children), and AED-exposed children with BDs versus those without BDs, adjusting for confounders. Fisher exact test was used to compare categorical data. RESULTS: Sixty-seven child-parent trios were included: 10 with AED-exposed children with BDs, 46 with AED-exposed unaffected children, and 11 with AED-unexposed unaffected children. The dnSNV/indel burden did not differ between AED-exposed children and AED-unexposed unaffected children (median dnSNV/indel number/child [range] = 3 [0-7] vs 3 [1-5], p = 0.50). Among AED-exposed children, there were no significant differences between those with BDs and those unaffected. Likely deleterious dnSNVs/indels were detected in 9 of 67 (13%) children, none of whom had BDs. The proportion of cases harboring likely deleterious dnSNVs/indels did not differ significantly between AED-unexposed and AED-exposed children. The dnCNV burden was not associated with AED exposure or birth outcome. INTERPRETATION: Our study indicates that prenatal AED exposure does not increase the burden of de novo variants, and that this mechanism is not a major contributor to AED-induced BDs. These results can be incorporated in routine patient counseling. ANN NEUROL 2020;87:897-906.