Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract
    Garg, M ; Angus, PW ; Burrell, LM ; Herath, C ; Gibson, PR ; Lubel, JS (WILEY, 2012-02)
    BACKGROUND: The renin-angiotensin system (RAS) is a homeostatic pathway widely known to regulate cardiovascular and renal physiology; however, little is known about its influence in gastrointestinal tissues. AIM: To elicit the anatomical distribution and physiological significance of the components of the RAS in the gastrointestinal tract. METHODS: An extensive online literature review including Pubmed and Medline. RESULTS: There is evidence for RAS involvement in gastrointestinal physiology and pathophysiology, with all the components required for autonomous regulation identified throughout the gastrointestinal tract. The RAS is implicated in the regulation of glucose, amino acid, fluid and electrolyte absorption and secretion, motility, inflammation, blood flow and possibly malignant disease within the gastrointestinal tract. Animal studies investigating the effects of RAS blockade in a range of conditions including inflammatory bowel disease, functional gut disorders, gastrointestinal malignancy and even intestinal ischaemia have been encouraging to date. Given the ready availability of drugs that modify the RAS and their excellent safety profile, an opportunity exists for investigation of their possible therapeutic role in a variety of human gastrointestinal diseases. CONCLUSIONS: The gastrointestinal renin-angiotensin system appears to be intricately involved in a number of physiological processes, and provides a possible target for novel investigative and therapeutic approaches.
  • Item
    No Preview Available
    Liver disease and the renin–angiotensin system: Recent discoveries and clinical implications
    Lubel, JS ; Herath, CB ; Burrell, LM ; Angus, PW (Wiley, 2008-09)
    Abstract The renin–angiotensin system (RAS) is a key regulator of vascular resistance, sodium and water homeostasis and the response to tissue injury. Historically, angiotensin II (Ang II) was thought to be the primary effector peptide of this system. Ang II is produced predominantly by the effect of angiotensin converting enzyme (ACE) on angiotensin I (Ang I). Ang II acts mainly through the angiotensin II type‐1 receptor (AT1) and, together with ACE, these components represent the ‘classical’ axis of the RAS. Drug therapies targeting the RAS by inhibiting Ang II formation (ACE inhibitors) or binding to its receptor (angiotensin receptor blockers) are now in widespread clinical use and have been shown to reduce tissue injury and fibrosis in cardiac and renal disease independently of their effects on blood pressure. In 2000, two groups using different methodologies identified a homolog of ACE, called ACE2, which cleaves Ang II to form the biologically active heptapeptide, Ang‐(1–7). Conceptually, ACE2, Ang‐(1–7), and its putative receptor, the mas receptor represent an ‘alternative’ axis of the RAS capable of opposing the often deleterious actions of Ang II. Interestingly, ACE inhibitors and angiotensin receptor blockers increase Ang‐(1–7) production and it has been proposed that some of the beneficial effects of these drugs are mediated through upregulation of Ang‐(1–7) rather than inhibition of Ang II production or receptor binding. The present review focuses on the novel components and pathways of the RAS with particular reference to their potential contribution towards the pathophysiology of liver disease.
  • Item
    No Preview Available
    Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis
    Herath, CB ; Warner, FJ ; Lubel, JS ; Dean, RG ; Jia, Z ; Lew, RA ; Smith, AI ; Burrell, LM ; Angus, PW (ELSEVIER, 2007-09)
    BACKGROUND/AIMS: Angiotensin-converting enzyme 2 (ACE2), its product, angiotensin-(1-7) and its receptor, Mas, may moderate the adverse effects of angiotensin II in liver disease. We examined the expression of these novel components of the renin angiotensin system (RAS) and the production and vasoactive effects of angiotensin-(1-7) in the bile duct ligated (BDL) rat. METHODS: BDL or sham-operated rats were sacrificed at 1, 2, 3 and 4 weeks. Tissue and blood were collected for gene expression, enzyme activity and peptide measurements. In situ perfused livers were used to assess angiotensin peptide production and their effects on portal resistance. RESULTS: Hepatic ACE2 gene and activity (P<0.0005), plasma angiotensin-(1-7) (P<0.0005) and Mas receptor expression (P<0.01) were increased following BDL compared to shams. Perfusion experiments confirmed that BDL livers produced increased angiotensin-(1-7) (P<0.05) from angiotensin II and this was augmented (P<0.01) by ACE inhibition. Whilst angiotensin II increased vasoconstriction in cirrhotic livers, angiotensin-(1-7) had no effect on portal resistance. CONCLUSIONS: RAS activation in chronic liver injury is associated with upregulation of ACE2, Mas and hepatic conversion of angiotensin II to angiotensin-(1-7) leading to increased circulating angiotensin-(1-7). These results support the presence of an ACE2-angiotensin-(1-7)-Mas axis in liver injury which may counteract the effects of angiotensin II.
  • Item
    No Preview Available
    Update on new aspects of the renin-angiotensin system in liver disease: clinical implications and new therapeutic options
    Grace, JA ; Herath, CB ; Mak, KY ; Burrell, LM ; Angus, PW (PORTLAND PRESS LTD, 2012-08)
    The RAS (renin-angiotensin system) is now recognized as an important regulator of liver fibrosis and portal pressure. Liver injury stimulates the hepatic expression of components of the RAS, such as ACE (angiotensin-converting enzyme) and the AT(1) receptor [AngII (angiotensin II) type 1 receptor], which play an active role in promoting inflammation and deposition of extracellular matrix. In addition, the more recently recognized structural homologue of ACE, ACE2, is also up-regulated. ACE2 catalyses the conversion of AngII into Ang-(1-7) [angiotensin-(1-7)], and there is accumulating evidence that this 'alternative axis' of the RAS has anti-fibrotic, vasodilatory and anti-proliferative effects, thus counterbalancing the effects of AngII in the liver. The RAS is also emerging as an important contributor to the pathophysiology of portal hypertension in cirrhosis. Although the intrahepatic circulation in cirrhosis is hypercontractile in response to AngII, resulting in increased hepatic resistance, the splanchnic vasculature is hyporesponsive, promoting the development of the hyperdynamic circulation that characterizes portal hypertension. Both liver fibrosis and portal hypertension represent important therapeutic challenges for the clinician, and there is accumulating evidence that RAS blockade may be beneficial in these circumstances. The present review outlines new aspects of the RAS and explores its role in the pathogenesis and treatment of liver fibrosis and portal hypertension.