Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies
    Ye, Z ; Bennett, MF ; Bahlo, M ; Scheffer, IE ; Berkovic, SF ; Perucca, P ; Hildebrand, MS (TAYLOR & FRANCIS LTD, 2021-11-02)
    INTRODUCTION: Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED: The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION: These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
  • Item
    Thumbnail Image
    Loss-of-function variants in Kv11.1 cardiac channels as a biomarker for SUDEP
    Soh, MS ; Bagnall, RD ; Bennett, MF ; Bleakley, LE ; Mohamed Syazwan, ES ; Marie Phillips, A ; Chiam, MDF ; McKenzie, CE ; Hildebrand, M ; Crompton, D ; Bahlo, M ; Semsarian, C ; Scheffer, IE ; Berkovic, SF ; Reid, CA (WILEY, 2021-07)
    OBJECTIVE: To compare the frequency and impact on the channel function of KCNH2 variants in SUDEP patients with epilepsy controls comprising patients older than 50 years, a group with low SUDEP risk, and establish loss-of-function KCNH2 variants as predictive biomarkers of SUDEP risk. METHODS: We searched for KCNH2 variants with a minor allele frequency of <5%. Functional analysis in Xenopus laevis oocytes was performed for all KCNH2 variants identified. RESULTS: KCNH2 variants were found in 11.1% (10/90) of SUDEP individuals compared to 6.0% (20/332) of epilepsy controls (p = 0.11). Loss-of-function KCNH2 variants, defined as causing >20% reduction in maximal amplitude, were observed in 8.9% (8/90) SUDEP patients compared to 3.3% (11/332) epilepsy controls suggesting about threefold enrichment (nominal p = 0.04). KCNH2 variants that did not change channel function occurred at a similar frequency in SUDEP (2.2%; 2/90) and epilepsy control (2.7%; 9/332) cohorts (p > 0.99). Rare KCNH2 variants (<1% allele frequency) associated with greater loss of function and an ~11-fold enrichment in the SUDEP cohort (nominal p = 0.03). In silico tools were unable to predict the impact of a variant on function highlighting the need for electrophysiological analysis. INTERPRETATION: These data show that loss-of-function KCNH2 variants are enriched in SUDEP patients when compared to an epilepsy population older than 50 years, suggesting that cardiac mechanisms contribute to SUDEP risk. We propose that genetic screening in combination with functional analysis can identify loss-of-function KCNH2 variants that could act as biomarkers of an individual's SUDEP risk.
  • Item
    Thumbnail Image
    Transcriptome analysis of a ring chromosome 20 patient cohort
    Myers, KA ; Bennett, MF ; Hildebrand, MS ; Coleman, MJ ; Zhou, G ; Hollingsworth, G ; Cairns, A ; Riney, K ; Berkovic, SF ; Bahlo, M ; Scheffer, IE (WILEY, 2021-01)
    Ring chromosomes occur when the ends of normally rod-shaped chromosomes fuse. In ring chromosome 20 (ring 20), intellectual disability and epilepsy are usually present, even if there is no deleted coding material; the mechanism by which individuals with complete ring chromosomes develop seizures and other phenotypic abnormalities is not understood. We investigated altered gene transcription as a contributing factor by performing RNA-sequencing (RNA-seq) analysis on blood from seven patients with ring 20, and 11 first-degree relatives (all parents). Geographic analysis did not identify altered expression in peritelomeric or other specific chromosome 20 regions. RNA-seq analysis revealed 97 genes potentially differentially expressed in ring 20 patients. These included one epilepsy gene, NPRL3, but this finding was not confirmed on reverse transcription Droplet Digital polymerase chain reaction analysis. Molecular studies of structural chromosomal anomalies such as ring chromosome are challenging and often difficult to interpret because many patients are mosaic, and there may be genome-wide chromosomal instability affecting gene expression. Our findings nevertheless suggest that peritelomeric altered transcription is not the likely pathogenic mechanism in ring 20. Underlying genetic mechanisms are likely complex and may involve differential expression of many genes, the majority of which may not be located on chromosome 20.
  • Item
    Thumbnail Image
    Inherited RORB pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy
    Sadleir, LG ; de Valles-Ibanez, G ; King, C ; Coleman, M ; Mossman, S ; Paterson, S ; Nguyen, J ; Berkovic, SF ; Mullen, S ; Bahlo, M ; Hildebrand, MS ; Mefford, HC ; Scheffer, IE (WILEY, 2020-04)
    Variants in RORB have been reported in eight individuals with epilepsy, with phenotypes ranging from eyelid myoclonia with absence epilepsy to developmental and epileptic encephalopathies. We identified novel RORB variants in 11 affected individuals from four families. One was from whole genome sequencing and three were from RORB screening of three epilepsy cohorts: developmental and epileptic encephalopathies (n = 1021), overlap of generalized and occipital epilepsy (n = 84), and photosensitivity (n = 123). Following interviews and review of medical records, individuals' seizure and epilepsy syndromes were classified. Three novel missense variants and one exon 3 deletion were predicted to be pathogenic by in silico tools, not found in population databases, and located in key evolutionary conserved domains. Median age at seizure onset was 3.5 years (0.5-10 years). Generalized, predominantly absence and myoclonic, and occipital seizures were seen in all families, often within the same individual (6/11). All individuals with epilepsy were photosensitive, and seven of 11 had cognitive abnormalities. Electroencephalograms showed generalized spike and wave and/or polyspike and wave. Here we show a striking RORB phenotype of overlap of photosensitive generalized and occipital epilepsy in both individuals and families. This is the first report of a gene associated with this overlap of epilepsy syndromes.
  • Item
    Thumbnail Image
    Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain
    Ye, Z ; Chatterton, Z ; Pflueger, J ; Damiano, JA ; McQuillan, L ; Harvey, AS ; Malone, S ; Do, H ; Maixner, W ; Schneider, A ; Nolan, B ; Wood, M ; Lee, WS ; Gillies, G ; Pope, K ; Wilson, M ; Lockhart, PJ ; Dobrovic, A ; Scheffer, IE ; Bahlo, M ; Leventer, RJ ; Lister, R ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2021)
    Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.
  • Item
    Thumbnail Image
    In silico prioritization based on coexpression can aid epileptic encephalopathy gene discovery
    Oliver, KL ; Lukic, V ; Freytag, S ; Scheffer, IE ; Berkovic, SF ; Bahlo, M (LIPPINCOTT WILLIAMS & WILKINS, 2016-02)
    OBJECTIVE: To evaluate the performance of an in silico prioritization approach that was applied to 179 epileptic encephalopathy candidate genes in 2013 and to expand the application of this approach to the whole genome based on expression data from the Allen Human Brain Atlas. METHODS: PubMed searches determined which of the 179 epileptic encephalopathy candidate genes had been validated. For validated genes, it was noted whether they were 1 of the 19 of 179 candidates prioritized in 2013. The in silico prioritization approach was applied genome-wide; all genes were ranked according to their coexpression strength with a reference set (i.e., 51 established epileptic encephalopathy genes) in both adult and developing human brain expression data sets. Candidate genes ranked in the top 10% for both data sets were cross-referenced with genes previously implicated in the epileptic encephalopathies due to a de novo variant. RESULTS: Five of 6 validated epileptic encephalopathy candidate genes were among the 19 prioritized in 2013 (odds ratio = 54, 95% confidence interval [7,∞], p = 4.5 × 10(-5), Fisher exact test); one gene was false negative. A total of 297 genes ranked in the top 10% for both the adult and developing brain data sets based on coexpression with the reference set. Of these, 9 had been previously implicated in the epileptic encephalopathies (FBXO41, PLXNA1, ACOT4, PAK6, GABBR2, YWHAG, NBEA, KNDC1, and SELRC1). CONCLUSIONS: We conclude that brain gene coexpression data can be used to assist epileptic encephalopathy gene discovery and propose 9 genes as strong epileptic encephalopathy candidates worthy of further investigation.
  • Item
    Thumbnail Image
    PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy
    Hildebrand, MS ; Tankard, R ; Gazina, EV ; Damiano, JA ; Lawrence, KM ; Dahl, H-HM ; Regan, BM ; Shearer, AE ; Smith, RJH ; Marini, C ; Guerrini, R ; Labate, A ; Gambardella, A ; Tinuper, P ; Lichetta, L ; Baldassari, S ; Bisulli, F ; Pippucci, T ; Scheffer, IE ; Reid, CA ; Petrou, S ; Bahlo, M ; Berkovic, SF (WILEY, 2015-08)
    OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
  • Item
    Thumbnail Image
    Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania
    Ware, TL ; Huskins, SR ; Grinton, BE ; Liu, Y-C ; Bennett, MF ; Harvey, M ; McMahon, J ; Andreopoulos-Malikotsinas, D ; Bahlo, M ; Howell, KB ; Hildebrand, MS ; Damiano, JA ; Rosenfeld, A ; Mackay, MT ; Mandelstam, S ; Leventer, RJ ; Harvey, AS ; Freeman, JL ; Scheffer, IE ; Jones, DL ; Berkovic, SF (WILEY, 2019-09)
    We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.
  • Item
    Thumbnail Image
    Polygenic burden in focal and generalized epilepsies
    Leu, C ; Stevelink, R ; Smith, AW ; Goleva, SB ; Kanai, M ; Ferguson, L ; Campbell, C ; Kamatani, Y ; Okada, Y ; Sisodiya, SM ; Cavalleri, GL ; Koeleman, BPC ; Lerche, H ; Jehi, L ; Davis, LK ; Najm, IM ; Palotie, A ; Daly, MJ ; Busch, RM ; Lal, D (OXFORD UNIV PRESS, 2019-11)
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.
  • Item
    Thumbnail Image
    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3
    Florian, RT ; Kraft, F ; Leitao, E ; Kaya, S ; Klebe, S ; Magnin, E ; van Rootselaar, A-F ; Buratti, J ; Kuehnel, T ; Schroeder, C ; Giesselmann, S ; Tschernoster, N ; Altmueller, J ; lamiral, A ; Keren, B ; Nava, C ; Bouteiller, D ; Forlani, S ; Jornea, L ; Kubica, R ; Ye, T ; Plassard, D ; Jost, B ; Meyer, V ; Deleuze, J-F ; Delpu, Y ; Avarello, MDM ; Vijfhuizen, LS ; Rudolf, G ; Hirsch, E ; Kroes, T ; Reif, PS ; Rosenow, F ; Ganos, C ; Vidailhet, M ; Thivard, L ; Mathieu, A ; Bourgeron, T ; Kurth, I ; Rafehi, H ; Steenpass, L ; Horsthemke, B ; Berkovic, SF ; Bisulli, F ; Brancati, F ; Canafoglia, L ; Casari, G ; Guerrini, R ; Ishiura, H ; Licchetta, L ; Mei, D ; Pippucci, T ; Sadleir, L ; Scheffer, IE ; Striano, P ; Tinuper, P ; Tsuji, S ; Zara, F ; LeGuern, E ; Klein, KM ; Labauge, P ; Bennett, MF ; Bahlo, M ; Gecz, J ; Corbett, MA ; Tijssen, MAJ ; van den Maagdenberg, AMJM ; Depienne, C (NATURE PUBLISHING GROUP, 2019-10-29)
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.