Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    Thumbnail Image
    Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay
    Myers, KA ; Bennett, MF ; Chow, CW ; Carden, SM ; Mandelstam, SA ; Bahlo, M ; Scheffer, IE (WILEY, 2018-01)
    Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in β-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however β-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.
  • Item
    Thumbnail Image
    Evidence of linkage to chromosome 5p13.2-q11.1 in a large inbred family with genetic generalized epilepsy
    Kinay, D ; Oliver, KL ; Tuzun, E ; Damiano, JA ; Ulusoy, C ; Andermann, E ; Hildebrand, MS ; Bahlo, M ; Berkovic, SF (WILEY, 2018-08)
    The clinical genetics of genetic generalized epilepsy suggests complex inheritance; large pedigrees, with multiple affected individuals, are rare exceptions. We studied a large consanguineous family from Turkey where extensive electroclinical phenotyping revealed a familial phenotype most closely resembling juvenile myoclonic epilepsy. For a subject to be considered affected (n = 14), a diagnostic electroencephalogram was required. Seizure onset ranged between 6 and 19 years (mean = 12 years). Thirteen of 14 experienced myoclonic jerks; in 11, this was associated with eyelid blinking, and in 10 it was interspersed with absences. Generalized tonic-clonic seizures were seen in 11. One individual had generalized tonic-clonic seizures alone. Electroencephalograms demonstrated generalized polyspike and wave discharges that were not associated with photoparoxysmal response. Intellect was normal. Nineteen family members were subsequently chosen for nonparametric multipoint linkage analyses, which identified a 39.5 Mb region on chromosome 5 (P < 0.0001). Iterative analysis, including discovery of a subtly affected individual, narrowed the critical region to 15.4 Mb and possibly to 5.5 Mb. Homozygous versus heterozygous state of the refined 5p13.2-q11.1 haplotype was not associated with phenotypic severity or onset age, suggesting that one versus two pathogenic variants may result in similar phenotypes. Whole exome sequencing (n = 3) failed to detect any rare, protein-coding variants within the highly significant linkage region that includes HCN1 as a promising candidate.
  • Item
    Thumbnail Image
    Splice-altering variant in COL11A1 as a cause of nonsyndromic hearing loss DFNA37
    Booth, KT ; Askew, JW ; Talebizadeh, Z ; Huygen, PLM ; Eudy, J ; Kenyon, J ; Hoover, D ; Hildebrand, MS ; Smith, KR ; Bahlo, M ; Kimberling, WJ ; Smith, RJH ; Azaiez, H ; Smith, SD (NATURE PUBLISHING GROUP, 2019-04)
    PURPOSE: The aim of this study was to determine the genetic cause of autosomal dominant nonsyndromic hearing loss segregating in a multigenerational family. METHODS: Clinical examination, genome-wide linkage analysis, and exome sequencing were carried out on the family. RESULTS: Affected individuals presented with early-onset progressive mild hearing impairment with a fairly flat, gently downsloping or U-shaped audiogram configuration. Detailed clinical examination excluded any additional symptoms. Linkage analysis detected an interval on chromosome 1p21 with a logarithm of the odds (LOD) score of 8.29: designated locus DFNA37. Exome sequencing identified a novel canonical acceptor splice-site variant c.652-2A>C in the COL11A1 gene within the DFNA37 locus. Genotyping of all 48 family members confirmed segregation of this variant with the deafness phenotype in the extended family. The c.652-2A>C variant is novel, highly conserved, and confirmed in vitro to alter RNA splicing. CONCLUSION: We have identified COL11A1 as the gene responsible for deafness at the DFNA37 locus. Previously, COL11A1 was solely associated with Marshall and Stickler syndromes. This study expands its phenotypic spectrum to include nonsyndromic deafness. The implications of this discovery are valuable in the clinical diagnosis, prognosis, and treatment of patients with COL11A1 pathogenic variants.
  • Item
    No Preview Available
    Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia
    Khan, K ; Zech, M ; Morgan, AT ; Amor, DJ ; Skorvanek, M ; Khan, TN ; Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Coleman, M ; Rigbye, KA ; Scheffer, IE ; Bahlo, M ; Wagner, M ; Lam, DD ; Berutti, R ; Havrankova, P ; Fecikova, A ; Strom, TM ; Han, V ; Dosekova, P ; Gdovinova, Z ; Laccone, F ; Jameel, M ; Mooney, MR ; Baig, SM ; Jech, R ; Davis, EE ; Katsanis, N ; Winkelmann, J (NATURE PUBLISHING GROUP, 2019-11)
    PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
  • Item
    Thumbnail Image
    Using familial information for variant filtering in high-throughput sequencing studies
    Bahlo, M ; Tankard, R ; Lukic, V ; Oliver, KL ; Smith, KR (SPRINGER, 2014-11)
    High-throughput sequencing studies (HTS) have been highly successful in identifying the genetic causes of human disease, particularly those following Mendelian inheritance. Many HTS studies to date have been performed without utilizing available family relationships between samples. Here, we discuss the many merits and occasional pitfalls of using identity by descent information in conjunction with HTS studies. These methods are not only applicable to family studies but are also useful in cohorts of apparently unrelated, 'sporadic' cases and small families underpowered for linkage and allow inference of relationships between individuals. Incorporating familial/pedigree information not only provides powerful filtering options for the extensive variant lists that are usually produced by HTS but also allows valuable quality control checks, insights into the genetic model and the genotypic status of individuals of interest. In particular, these methods are valuable for challenging discovery scenarios in HTS analysis, such as in the study of populations poorly represented in variant databases typically used for filtering, and in the case of poor-quality HTS data.
  • Item
    Thumbnail Image
    Reducing the exome search space for Mendelian diseases using genetic linkage analysis of exome genotypes
    Smith, KR ; Bromhead, CJ ; Hildebrand, MS ; Shearer, AE ; Lockhart, PJ ; Najmabadi, H ; Leventer, RJ ; McGillivray, G ; Amor, DJ ; Smith, RJ ; Bahlo, M (BIOMED CENTRAL LTD, 2011)
    Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.
  • Item
    Thumbnail Image
    In silico prioritization based on coexpression can aid epileptic encephalopathy gene discovery
    Oliver, KL ; Lukic, V ; Freytag, S ; Scheffer, IE ; Berkovic, SF ; Bahlo, M (LIPPINCOTT WILLIAMS & WILKINS, 2016-02)
    OBJECTIVE: To evaluate the performance of an in silico prioritization approach that was applied to 179 epileptic encephalopathy candidate genes in 2013 and to expand the application of this approach to the whole genome based on expression data from the Allen Human Brain Atlas. METHODS: PubMed searches determined which of the 179 epileptic encephalopathy candidate genes had been validated. For validated genes, it was noted whether they were 1 of the 19 of 179 candidates prioritized in 2013. The in silico prioritization approach was applied genome-wide; all genes were ranked according to their coexpression strength with a reference set (i.e., 51 established epileptic encephalopathy genes) in both adult and developing human brain expression data sets. Candidate genes ranked in the top 10% for both data sets were cross-referenced with genes previously implicated in the epileptic encephalopathies due to a de novo variant. RESULTS: Five of 6 validated epileptic encephalopathy candidate genes were among the 19 prioritized in 2013 (odds ratio = 54, 95% confidence interval [7,∞], p = 4.5 × 10(-5), Fisher exact test); one gene was false negative. A total of 297 genes ranked in the top 10% for both the adult and developing brain data sets based on coexpression with the reference set. Of these, 9 had been previously implicated in the epileptic encephalopathies (FBXO41, PLXNA1, ACOT4, PAK6, GABBR2, YWHAG, NBEA, KNDC1, and SELRC1). CONCLUSIONS: We conclude that brain gene coexpression data can be used to assist epileptic encephalopathy gene discovery and propose 9 genes as strong epileptic encephalopathy candidates worthy of further investigation.
  • Item
    Thumbnail Image
    brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets
    Freytag, S ; Burgess, R ; Oliver, KL ; Bahlo, M (BMC, 2017-06-08)
    BACKGROUND: The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled. RESULTS: We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications. CONCLUSIONS: brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .
  • Item
    Thumbnail Image
    PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy
    Hildebrand, MS ; Tankard, R ; Gazina, EV ; Damiano, JA ; Lawrence, KM ; Dahl, H-HM ; Regan, BM ; Shearer, AE ; Smith, RJH ; Marini, C ; Guerrini, R ; Labate, A ; Gambardella, A ; Tinuper, P ; Lichetta, L ; Baldassari, S ; Bisulli, F ; Pippucci, T ; Scheffer, IE ; Reid, CA ; Petrou, S ; Bahlo, M ; Berkovic, SF (WILEY, 2015-08)
    OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
  • Item
    Thumbnail Image
    A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development
    Eising, E ; Carrion-Castillo, A ; Vino, A ; Strand, EA ; Jakielski, KJ ; Scerri, TS ; Hildebrand, MS ; Webster, R ; Ma, A ; Mazoyer, B ; Francks, C ; Bahlo, M ; Scheffer, IE ; Morgan, AT ; Shriberg, LD ; Fisher, SE (NATURE PUBLISHING GROUP, 2019-07)
    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.