Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Rare Genetic Variation and Outcome of Surgery for Mesial Temporal Lobe Epilepsy
    Perucca, P ; Stanley, K ; Harris, N ; McIntosh, AM ; Asadi-Pooya, AA ; Mikati, MA ; Andrade, DM ; Dugan, P ; Depondt, C ; Choi, H ; Heinzen, EL ; Cavalleri, GL ; Buono, RJ ; Devinsky, O ; Sperling, MR ; Berkovic, SF ; Delanty, N ; Goldstein, DB ; O'Brien, TJ (WILEY, 2023-04)
    OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.
  • Item
    Thumbnail Image
    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
    Motelow, JE ; Povysil, G ; Dhindsa, RS ; Stanley, KE ; Allen, AS ; Feng, Y-CA ; Howrigan, DP ; Abbott, LE ; Tashman, K ; Cerrato, F ; Cusick, C ; Singh, T ; Heyne, H ; Byrnes, AE ; Churchhouse, C ; Watts, N ; Solomonson, M ; Lal, D ; Gupta, N ; Neale, BM ; Cavalleri, GL ; Cossette, P ; Cotsapas, C ; De Jonghe, P ; Dixon-Salazar, T ; Guerrini, R ; Hakonarson, H ; Heinzen, EL ; Helbig, I ; Kwan, P ; Marson, AG ; Petrovski, S ; Kamalakaran, S ; Sisodiya, SM ; Stewart, R ; Weckhuysen, S ; Depondt, C ; Dlugos, DJ ; Scheffer, IE ; Striano, P ; Freyer, C ; Krause, R ; May, P ; McKenna, K ; Regan, BM ; Bennett, CA ; Leu, C ; Leech, SL ; O'Brien, TJ ; Todaro, M ; Stamberger, H ; Andrade, DM ; Ali, QZ ; Sadoway, TR ; Krestel, H ; Schaller, A ; Papacostas, SS ; Kousiappa, I ; Tanteles, GA ; Christou, Y ; Sterbova, K ; Vlckova, M ; Sedlackova, L ; Lassuthova, P ; Klein, KM ; Rosenow, F ; Reif, PS ; Knake, S ; Neubauer, BA ; Zimprich, F ; Feucht, M ; Reinthaler, EM ; Kunz, WS ; Zsurka, G ; Surges, R ; Baumgartner, T ; von Wrede, R ; Pendziwiat, M ; Muhle, H ; Rademacher, A ; van Baalen, A ; von Spiczak, S ; Stephani, U ; Afawi, Z ; Korczyn, AD ; Kanaan, M ; Canavati, C ; Kurlemann, G ; Muller-Schluter, K ; Kluger, G ; Haeusler, M ; Blatt, I ; Lemke, JR ; Krey, I ; Weber, YG ; Wolking, S ; Becker, F ; Lauxmann, S ; Bosselmann, C ; Kegele, J ; Hengsbach, C ; Rau, S ; Steinhoff, BJ ; Schulze-Bonhage, A ; Borggraefe, I ; Schankin, CJ ; Schubert-Bast, S ; Schreiber, H ; Mayer, T ; Korinthenberg, R ; Brockmann, K ; Wolff, M ; Dennig, D ; Madeleyn, R ; Kalviainen, R ; Saarela, A ; Timonen, O ; Linnankivi, T ; Lehesjoki, A-E ; Rheims, S ; Lesca, G ; Ryvlin, P ; Maillard, L ; Valton, L ; Derambure, P ; Bartolomei, F ; Hirsch, E ; Michel, V ; Chassoux, F ; Rees, M ; Chung, S-K ; Pickrell, WO ; Powell, R ; Baker, MD ; Fonferko-Shadrach, B ; Lawthom, C ; Anderson, J ; Schneider, N ; Balestrini, S ; Zagaglia, S ; Braatz, V ; Johnson, MR ; Auce, P ; Sills, GJ ; Baum, LW ; Sham, PC ; Cherny, SS ; Lui, CHT ; Delanty, N ; Doherty, CP ; Shukralla, A ; El-Naggar, H ; Widdess-Walsh, P ; Barisi, N ; Canafoglia, L ; Franceschetti, S ; Castellotti, B ; Granata, T ; Ragona, F ; Zara, F ; Iacomino, M ; Riva, A ; Madia, F ; Vari, MS ; Salpietro, V ; Scala, M ; Mancardi, MM ; Nobili, L ; Amadori, E ; Giacomini, T ; Bisulli, F ; Pippucci, T ; Licchetta, L ; Minardi, R ; Tinuper, P ; Muccioli, L ; Mostacci, B ; Gambardella, A ; Labate, A ; Annesi, G ; Manna, L ; Gagliardi, M ; Parrini, E ; Mei, D ; Vetro, A ; Bianchini, C ; Montomoli, M ; Doccini, V ; Barba, C ; Hirose, S ; Ishii, A ; Suzuki, T ; Inoue, Y ; Yamakawa, K ; Beydoun, A ; Nasreddine, W ; Zgheib, NK ; Tumiene, B ; Utkus, A ; Sadleir, LG ; King, C ; Caglayan, SH ; Arslan, M ; Yapici, Z ; Topaloglu, P ; Kara, B ; Yis, U ; Turkdogan, D ; Gundogdu-Eken, A ; Bebek, N ; Tsai, M-H ; Ho, C-J ; Lin, C-H ; Lin, K-L ; Chou, I-J ; Poduri, A ; Shiedley, BR ; Shain, C ; Noebels, JL ; Goldman, A ; Busch, RM ; Jehi, L ; Najm, IM ; Ferguson, L ; Khoury, J ; Glauser, TA ; Clark, PO ; Buono, RJ ; Ferraro, TN ; Sperling, MR ; Lo, W ; Privitera, M ; French, JA ; Schachter, S ; Kuzniecky, R ; Devinsky, O ; Hegde, M ; Greenberg, DA ; Ellis, CA ; Goldberg, E ; Helbig, KL ; Cosico, M ; Vaidiswaran, P ; Fitch, E ; Berkovic, SF ; Lerche, H ; Lowenstein, DH ; Goldstein, DB (CELL PRESS, 2021-06-03)
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
  • Item
    Thumbnail Image
    Quantitative analysis of phenotypic elements augments traditional electroclinical classification of common familial epilepsies
    Abou-Khalil, B ; Afawi, Z ; Allen, AS ; Bautista, JF ; Bellows, ST ; Berkovic, SF ; Bluvstein, J ; Burgess, R ; Cascino, G ; Cossette, P ; Cristofaro, S ; Crompton, DE ; Delanty, N ; Devinsky, O ; Dlugos, D ; Ellis, CA ; Epstein, MP ; Fountain, NB ; Freyer, C ; Geller, EB ; Glauser, T ; Glynn, S ; Goldberg-Stern, H ; Goldstein, DB ; Gravel, M ; Haas, K ; Haut, S ; Heinzen, EL ; Kirsch, HE ; Kivity, S ; Knowlton, R ; Korczyn, AD ; Kossoff, E ; Kuzniecky, R ; Loeb, R ; Lowenstein, DH ; Marson, AG ; McCormack, M ; McKenna, K ; Mefford, HC ; Motika, P ; Mullen, SA ; O'Brien, TJ ; Ottman, R ; Paolicchi, J ; Parent, JM ; Paterson, S ; Petrou, S ; Petrovski, S ; Pickrell, WO ; Poduri, A ; Rees, MI ; Sadleir, LG ; Scheffer, IE ; Shih, J ; Singh, R ; Sirven, J ; Smith, M ; Smith, PEM ; Thio, LL ; Thomas, RH ; Venkat, A ; Vining, E ; Von Allmen, G ; Weisenberg, J ; Widdess-Walsh, P ; Winawer, MR (WILEY, 2019-11)
    OBJECTIVE: Classification of epilepsy into types and subtypes is important for both clinical care and research into underlying disease mechanisms. A quantitative, data-driven approach may augment traditional electroclinical classification and shed new light on existing classification frameworks. METHODS: We used latent class analysis, a statistical method that assigns subjects into groups called latent classes based on phenotypic elements, to classify individuals with common familial epilepsies from the Epi4K Multiplex Families study. Phenotypic elements included seizure types, seizure symptoms, and other elements of the medical history. We compared class assignments to traditional electroclinical classifications and assessed familial aggregation of latent classes. RESULTS: A total of 1120 subjects with epilepsy were assigned to five latent classes. Classes 1 and 2 contained subjects with generalized epilepsy, largely reflecting the distinction between absence epilepsies and younger onset (class 1) versus myoclonic epilepsies and older onset (class 2). Classes 3 and 4 contained subjects with focal epilepsies, and in contrast to classes 1 and 2, these did not adhere as closely to clinically defined focal epilepsy subtypes. Class 5 contained nearly all subjects with febrile seizures plus or unknown epilepsy type, as well as a few subjects with generalized epilepsy and a few with focal epilepsy. Family concordance of latent classes was similar to or greater than concordance of clinically defined epilepsy types. SIGNIFICANCE: Quantitative classification of epilepsy has the potential to augment traditional electroclinical classification by (1) combining some syndromes into a single class, (2) splitting some syndromes into different classes, (3) helping to classify subjects who could not be classified clinically, and (4) defining the boundaries of clinically defined classifications. This approach can guide future research, including molecular genetic studies, by identifying homogeneous sets of individuals that may share underlying disease mechanisms.
  • Item
    Thumbnail Image
    Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy
    Wolking, S ; Moreau, C ; McCormack, M ; Krause, R ; Krenn, M ; Berkovic, S ; Cavalleri, GL ; Delanty, N ; Depondt, C ; Johnson, MR ; Koeleman, BPC ; Kunz, WS ; Lerche, H ; Marson, AG ; O'Brien, TJ ; Petrovski, S ; Sander, JW ; Sills, GJ ; Striano, P ; Zara, F ; Zimprich, F ; Sisodiya, SM ; Girard, SL ; Cossette, P (WILEY, 2021-07)
    OBJECTIVE: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings.
  • Item
    Thumbnail Image
    Antiepileptic Drug Teratogenicity and De Novo Genetic Variation Load
    Perucca, P ; Anderson, A ; Jazayeri, D ; Hitchcock, A ; Graham, J ; Todaro, M ; Tomson, T ; Battino, D ; Perucca, E ; Ferri, MM ; Rochtus, A ; Lagae, L ; Canevini, MP ; Zambrelli, E ; Campbell, E ; Koeleman, BPC ; Scheffer, IE ; Berkovic, SF ; Kwan, P ; Sisodiya, SM ; Goldstein, DB ; Petrovski, S ; Craig, J ; Vajda, FJE ; O'Brien, TJ (WILEY, 2020-06)
    OBJECTIVE: The mechanisms by which antiepileptic drugs (AEDs) cause birth defects (BDs) are unknown. Data suggest that AED-induced BDs may result from a genome-wide increase of de novo variants in the embryo, a mechanism that we investigated. METHODS: Whole exome sequencing data from child-parent trios were interrogated for de novo single-nucleotide variants/indels (dnSNVs/indels) and de novo copy number variants (dnCNVs). Generalized linear models were applied to assess de novo variant burdens in children exposed prenatally to AEDs (AED-exposed children) versus children without BDs not exposed prenatally to AEDs (AED-unexposed unaffected children), and AED-exposed children with BDs versus those without BDs, adjusting for confounders. Fisher exact test was used to compare categorical data. RESULTS: Sixty-seven child-parent trios were included: 10 with AED-exposed children with BDs, 46 with AED-exposed unaffected children, and 11 with AED-unexposed unaffected children. The dnSNV/indel burden did not differ between AED-exposed children and AED-unexposed unaffected children (median dnSNV/indel number/child [range] = 3 [0-7] vs 3 [1-5], p = 0.50). Among AED-exposed children, there were no significant differences between those with BDs and those unaffected. Likely deleterious dnSNVs/indels were detected in 9 of 67 (13%) children, none of whom had BDs. The proportion of cases harboring likely deleterious dnSNVs/indels did not differ significantly between AED-unexposed and AED-exposed children. The dnCNV burden was not associated with AED exposure or birth outcome. INTERPRETATION: Our study indicates that prenatal AED exposure does not increase the burden of de novo variants, and that this mechanism is not a major contributor to AED-induced BDs. These results can be incorporated in routine patient counseling. ANN NEUROL 2020;87:897-906.
  • Item
    No Preview Available
    De novo mutations in epileptic encephalopathies
    Allen, AS ; Berkovic, SF ; Cossette, P ; Delanty, N ; Dlugos, D ; Eichler, EE ; Epstein, MP ; Glauser, T ; Goldstein, DB ; Han, Y ; Heinzen, EL ; Hitomi, Y ; Howell, KB ; Johnson, MR ; Kuzniecky, R ; Lowenstein, DH ; Lu, Y-F ; Madou, MRZ ; Marson, AG ; Mefford, HC ; Nieh, SE ; O'Brien, TJ ; Ottman, R ; Petrovski, S ; Poduri, A ; Ruzzo, EK ; Scheffer, IE ; Sherr, EH ; Yuskaitis, CJ ; Abou-Khalil, B ; Alldredge, BK ; Bautista, JF ; Berkovic, SF ; Boro, A ; Cascino, GD ; Consalvo, D ; Crumrine, P ; Devinsky, O ; Dlugos, D ; Epstein, MP ; Fiol, M ; Fountain, NB ; French, J ; Friedman, D ; Geller, EB ; Glauser, T ; Glynn, S ; Haut, SR ; Hayward, J ; Helmers, SL ; Joshi, S ; Kanner, A ; Kirsch, HE ; Knowlton, RC ; Kossoff, E ; Kuperman, R ; Kuzniecky, R ; Lowenstein, DH ; McGuire, SM ; Motika, PV ; Novotny, EJ ; Ottman, R ; Paolicchi, JM ; Parent, JM ; Park, K ; Poduri, A ; Scheffer, IE ; Shellhaas, RA ; Sherr, EH ; Shih, JJ ; Singh, R ; Sirven, J ; Smith, MC ; Sullivan, J ; Thio, LL ; Venkat, A ; Vining, EPG ; Von Allmen, GK ; Weisenberg, JL ; Widdess-Walsh, P ; Winawer, MR (NATURE PUBLISHING GROUP, 2013-09-12)
    Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 × 10(-3)). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 × 10(-10) and P = 7.8 × 10(-12), respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P < 10(-8)), as has been reported previously for autism spectrum disorders.
  • Item
    Thumbnail Image
    Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A
    Kasperaviciute, D ; Catarino, CB ; Matarin, M ; Leu, C ; Novy, J ; Tostevin, A ; Leal, B ; Hessel, EVS ; Hallmann, K ; Hildebrand, MS ; Dahl, H-HM ; Ryten, M ; Trabzuni, D ; Ramasamy, A ; Alhusaini, S ; Doherty, CP ; Dorn, T ; Hansen, J ; Kraemer, G ; Steinhoff, BJ ; Zumsteg, D ; Duncan, S ; Kaelviaeinen, RK ; Eriksson, KJ ; Kantanen, A-M ; Pandolfo, M ; Gruber-Sedlmayr, U ; Schlachter, K ; Reinthaler, EM ; Stogmann, E ; Zimprich, F ; Theatre, E ; Smith, C ; O'Brien, TJ ; Tan, KM ; Petrovski, S ; Robbiano, A ; Paravidino, R ; Zara, F ; Striano, P ; Sperling, MR ; Buono, RJ ; Hakonarson, H ; Chaves, J ; Costa, PP ; Silva, BM ; da Silva, AM ; de Graan, PNE ; Koeleman, BPC ; Becker, A ; Schoch, S ; von Lehe, M ; Reif, PS ; Rosenow, F ; Becker, F ; Weber, Y ; Lerche, H ; Roessler, K ; Buchfelder, M ; Hamer, HM ; Kobow, K ; Coras, R ; Blumcke, I ; Scheffer, IE ; Berkovic, SF ; Weale, ME ; Delanty, N ; Depondt, C ; Cavalleri, GL ; Kunz, WS ; Sisodiya, SM (OXFORD UNIV PRESS, 2013-10)
    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
  • Item
    Thumbnail Image
    Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy
    Abou-Khalil, B ; Alldredge, BK ; Allen, AS ; Andermann, E ; Andermann, F ; Amrom, D ; Bautista, JF ; Berkovic, SF ; Boro, A ; Cascino, G ; Coe, BP ; Consalvo, D ; Cook, J ; Cossette, P ; Crumrine, P ; Delanty, N ; Devinsky, O ; Dlugos, D ; Eichler, EE ; Epstein, MP ; Fiol, M ; Fountain, NB ; French, J ; Friedman, D ; Geller, EB ; Glauser, T ; Glynn, S ; Goldstein, DB ; Haut, SR ; Hayward, J ; Heinzen, EL ; Helmers, SL ; Johnson, MR ; Joshi, S ; Kanner, A ; Kirsch, HE ; Knowlton, RC ; Kossoff, EH ; Krumm, N ; Kuperman, R ; Kuzniecky, R ; Lowenstein, DH ; Marson, AG ; McGuire, SM ; Mefford, HC ; Motika, PV ; Nelson, B ; Nieh, SE ; Novotny, EJ ; O'Brien, TJ ; Ottman, R ; Paolicchi, JM ; Parent, J ; Park, K ; Petrou, S ; Petrovski, S ; Poduri, A ; Raja, A ; Ruzzo, EK ; Scheffer, IE ; Shellhaas, RA ; Sherr, E ; Shih, JJ ; Singh, R ; Sirven, J ; Smith, MC ; Sullivan, J ; Liu, LT ; Venkat, A ; Vining, EPG ; Von Allmen, GK ; Weisenberg, JL ; Widdess-Walsh, P ; Winawer, MR (WILEY, 2015-08)
    Infantile spasms (IS) and Lennox-Gastaut syndrome (LGS) are epileptic encephalopathies characterized by early onset, intractable seizures, and poor developmental outcomes. De novo sequence mutations and copy number variants (CNVs) are causative in a subset of cases. We used exome sequence data in 349 trios with IS or LGS to identify putative de novo CNVs. We confirm 18 de novo CNVs in 17 patients (4.8%), 10 of which are likely pathogenic, giving a firm genetic diagnosis for 2.9% of patients. Confirmation of exome-predicted CNVs by array-based methods is still required due to false-positive rates of prediction algorithms. Our exome-based results are consistent with recent array-based studies in similar cohorts and highlight novel candidate genes for IS and LGS.
  • Item
    Thumbnail Image
    Polygenic burden in focal and generalized epilepsies
    Leu, C ; Stevelink, R ; Smith, AW ; Goleva, SB ; Kanai, M ; Ferguson, L ; Campbell, C ; Kamatani, Y ; Okada, Y ; Sisodiya, SM ; Cavalleri, GL ; Koeleman, BPC ; Lerche, H ; Jehi, L ; Davis, LK ; Najm, IM ; Palotie, A ; Daly, MJ ; Busch, RM ; Lal, D (OXFORD UNIV PRESS, 2019-11)
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.
  • Item
    Thumbnail Image
    Diverse genetic causes of polymicrogyria with epilepsy
    Allen, AS ; Aggarwal, V ; Berkovic, SF ; Cossette, P ; Delanty, N ; Dlugos, D ; Eichler, EE ; Epstein, MP ; Freyer, C ; Goldstein, DB ; Guerrini, R ; Glauser, T ; Heinzen, EL ; Johnson, MR ; Kuzniecky, R ; Lowenstein, DH ; Marson, AG ; Mefford, HC ; O'Brien, TJ ; Ottman, R ; Poduri, A ; Petrou, S ; Petrovski, S ; Ruzzo, EK ; Scheffer, IE ; Sherr, EH ; Abou-Khalil, B ; Amrom, D ; Andermann, E ; Andermann, F ; Berkovic, SF ; Bluvstein, J ; Boro, A ; Cascino, G ; Consalvo, D ; Crumrine, P ; Devinsky, O ; Dlugos, D ; Fountain, N ; Freyer, C ; Friedman, D ; Geller, E ; Glynn, S ; Haas, K ; Haut, S ; Joshi, S ; Kirsch, H ; Knowlton, R ; Kossoff, E ; Kuzniecky, R ; Lowenstein, DH ; Motika, PV ; Ottman, R ; Paolicchi, JM ; Parent, JM ; Poduri, A ; Scheffer, IE ; Shellhaas, RA ; Sherr, EH ; Shih, JJ ; Shinnar, S ; Singh, RK ; Sperling, M ; Smith, MC ; Sullivan, J ; Vining, EPG ; Von Allmen, GK ; Widdess-Walsh, P ; Winawer, MR ; Bautista, J ; Fiol, M ; Glauser, T ; Hayward, J ; Helmers, S ; Park, K ; Sirven, J ; Thio, LL ; Venkat, A ; Weisenberg, J ; Kuperman, R ; McGuire, S ; Novotny, E ; Sadleir, L (WILEY, 2021-04)
    OBJECTIVE: We sought to identify novel genes and to establish the contribution of known genes in a large cohort of patients with nonsyndromic sporadic polymicrogyria and epilepsy. METHODS: We enrolled participants with polymicrogyria and their parents through the Epilepsy Phenome/Genome Project. We performed phenotyping and whole exome sequencing (WES), trio analysis, and gene-level collapsing analysis to identify de novo or inherited variants, including germline or mosaic (postzygotic) single nucleotide variants, small insertion-deletion (indel) variants, and copy number variants present in leukocyte-derived DNA. RESULTS: Across the cohort of 86 individuals with polymicrogyria and epilepsy, we identified seven with pathogenic or likely pathogenic variants in PIK3R2, including four germline and three mosaic variants. PIK3R2 was the only gene harboring more than expected de novo variants across the entire cohort, and likewise the only gene that passed the genome-wide threshold of significance in the gene-level rare variant collapsing analysis. Consistent with previous reports, the PIK3R2 phenotype consisted of bilateral polymicrogyria concentrated in the perisylvian region with macrocephaly. Beyond PIK3R2, we also identified one case each with likely causal de novo variants in CCND2 and DYNC1H1 and biallelic variants in WDR62, all genes previously associated with polymicrogyria. Candidate genetic explanations in this cohort included single nucleotide de novo variants in other epilepsy-associated and neurodevelopmental disease-associated genes (SCN2A in two individuals, GRIA3, CACNA1C) and a 597-kb deletion at 15q25, a neurodevelopmental disease susceptibility locus. SIGNIFICANCE: This study confirms germline and postzygotically acquired de novo variants in PIK3R2 as an important cause of bilateral perisylvian polymicrogyria, notably with macrocephaly. In total, trio-based WES identified a genetic diagnosis in 12% and a candidate diagnosis in 6% of our polymicrogyria cohort. Our results suggest possible roles for SCN2A, GRIA3, CACNA1C, and 15q25 deletion in polymicrogyria, each already associated with epilepsy or other neurodevelopmental conditions without brain malformations. The role of these genes in polymicrogyria will be further understood as more patients with polymicrogyria undergo genetic evaluation.