Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Left ventricular hypertrophy in experimental chronic kidney disease is associated with reduced expression of cardiac Kruppel-like factor 15
    Patel, SK ; Velkoska, E ; Gayed, D ; Ramchand, J ; Lesmana, J ; Burrell, LM (BMC, 2018-07-03)
    BACKGROUND: Left ventricular hypertrophy (LVH) increases the risk of death in chronic kidney disease (CKD). The transcription factor Kruppel-like factor 15 (KLF15) is expressed in the heart and regulates cardiac remodelling through inhibition of hypertrophy and fibrosis. It is unknown if KLF15 expression is changed in CKD induced LVH, or whether expression is modulated by blood pressure reduction using angiotensin converting enzyme (ACE) inhibition. METHODS: CKD was induced in Sprague-Dawley rats by subtotal nephrectomy (STNx), and rats received vehicle (n = 10) or ACE inhibition (ramipril, 1 mg/kg/day, n = 10) for 4 weeks. Control, sham-operated rats (n = 9) received vehicle. Cardiac structure and function and expression of KLF15 were assessed. RESULTS: STNx caused impaired kidney function (P < 0.001), hypertension (P < 0.01), LVH (P < 0.001) and fibrosis (P < 0.05). LVH was associated with increased gene expression of hypertrophic markers, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP, P < 0.01) and connective tissue growth factor (CTGF) (P < 0.05). Cardiac KLF15 mRNA and protein expression were reduced (P < 0.05) in STNx and levels of the transcription regulator, GATA binding protein 4 were increased (P < 0.05). Ramipril reduced blood pressure (P < 0.001), LVH (P < 0.001) and fibrosis (P < 0.05), and increased cardiac KLF15 gene (P < 0.05) and protein levels (P < 0.01). This was associated with reduced ANP, BNP and CTGF mRNA (all P < 0.05). CONCLUSION: This is the first evidence that loss of cardiac KLF15 in CKD induced LVH is associated with unchecked trophic and fibrotic signalling, and that ACE inhibition ameliorates loss of cardiac KLF15.
  • Item
    Thumbnail Image
    The CTGF gene-945 G/C polymorphism is not associated with cardiac or kidney complications in subjects with type 2 diabetes
    Patel, SK ; Wai, B ; MacIsaac, RJ ; Grant, S ; Velkoska, E ; Ord, M ; Panagiotopoulos, S ; Jerums, G ; Srivastava, PM ; Burrell, LM (BMC, 2012-04-26)
    BACKGROUND: Connective tissue growth factor (CTGF) has been implicated in the cardiac and kidney complications of type 2 diabetes, and the CTGF -945 G/C polymorphism is associated with susceptibility to systemic sclerosis, a disease characterised by tissue fibrosis. This study investigated the association of the CTGF -945 G/C promoter variant with cardiac complications (left ventricular (LV) hypertrophy (LVH), diastolic and systolic dysfunction) and chronic kidney disease (CKD) in type 2 diabetes. METHODS: The CTGF -945 G/C polymorphism (rs6918698) was examined in 495 Caucasian subjects with type 2 diabetes. Cardiac structure and function were assessed by transthoracic echocardiography. Kidney function was assessed using estimated glomerular filtration rate (eGFR) and albuminuria, and CKD defined as the presence of kidney damage (decreased kidney function (eGFR <60 ml/min/1.73 m2) or albuminuria). RESULTS: The mean age ± SD of the cohort was 62 ± 14 years, with a body mass index (BMI) of 31 ± 6 kg/m2 and median diabetes duration of 11 years [25th, 75th interquartile range; 5, 18]. An abnormal echocardiogram was present in 73% of subjects; of these, 8% had LVH alone, 74% had diastolic dysfunction and 18% had systolic ± diastolic dysfunction. CKD was present in 42% of subjects. There were no significant associations between the CTGF -945 G/C polymorphism and echocardiographic parameters of LV mass or cardiac function, or kidney function both before and after adjustment for covariates of age, gender, BMI, blood pressure and hypertension. CTGF -945 genotypes were not associated with the cardiac complications of LVH, diastolic or systolic dysfunction, nor with CKD. CONCLUSIONS: In Caucasians with type 2 diabetes, genetic variation in the CTGF -945 G/C polymorphism is not associated with cardiac or kidney complications.
  • Item
    Thumbnail Image
    Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy
    Velkoska, E ; Dean, RG ; Griggs, K ; Burchill, L ; Burrell, LM (PORTLAND PRESS LTD, 2011-04)
    ACE (angiotensin-converting enzyme) 2 is expressed in the heart and kidney and metabolizes Ang (angiotensin) II to Ang-(1-7) a peptide that acts via the Ang-(1-7) or mas receptor. The aim of the present study was to assess the effect of Ang-(1-7) on blood pressure and cardiac remodelling in a rat model of renal mass ablation. Male SD (Sprague-Dawley) rats underwent STNx (subtotal nephrectomy) and were treated for 10 days with vehicle, the ACE inhibitor ramipril (oral 1 mg·kg(-1) of body weight·day(-1)) or Ang-(1-7) (subcutaneous 24 μg·kg(-1) of body weight·h(-1)) (all n = 15 per group). A control group (n = 10) of sham-operated rats were also studied. STNx rats were hypertensive (P<0.01) with renal impairment (P<0.001), cardiac hypertrophy (P<0.001) and fibrosis (P<0.05), and increased cardiac ACE (P<0.001) and ACE2 activity (P<0.05). Ramipril reduced blood pressure (P<0.01), improved cardiac hypertrophy (P<0.001) and inhibited cardiac ACE (P<0.001). By contrast, Ang-(1-7) infusion in STNx was associated with further increases in blood pressure (P<0.05), cardiac hypertrophy (P<0.05) and fibrosis (P<0.01). Ang-(1-7) infusion also increased cardiac ACE activity (P<0.001) and reduced cardiac ACE2 activity (P<0.05) compared with STNx-vehicle rats. Our results add to the increasing evidence that Ang-(1-7) may have deleterious cardiovascular effects in kidney failure and highlight the need for further in vivo studies of the ACE2/Ang-(1-7)/mas receptor axis in kidney disease.
  • Item
    Thumbnail Image
    The Receptor for Advanced Glycation End Products (RAGE) Is Associated with Persistent Atrial Fibrillation
    Lancefield, TF ; Patel, SK ; Freeman, M ; Velkoska, E ; Wai, B ; Srivastava, PM ; Horrigan, M ; Farouque, O ; Burrell, LM ; Oury, TD (PUBLIC LIBRARY SCIENCE, 2016-09-14)
    OBJECTIVE: Upregulation of the receptor for advanced glycation end products (RAGE) has been proposed as a pathophysiological mechanism underlying the development of atrial fibrillation (AF). We sought to investigate if soluble RAGE levels are associated with AF in Caucasian patients. METHODS: Patients (n = 587) were prospectively recruited and serum levels of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) measured. The patients included 527 with sinus rhythm, 32 with persistent AF (duration >7 days, n = 32) and 28 with paroxysmal AF (duration <7 days, n = 28). RESULTS: Patients with AF were older and had a greater prevalence of heart failure than patients in sinus rhythm. Circulating RAGE levels were higher in patients with persistent AF [median sRAGE 1190 (724-2041) pg/ml and median esRAGE 452 (288-932) pg/ml] compared with paroxysmal AF [sRAGE 799 (583-1033) pg/ml and esRAGE 279 (201-433) pg/ml, p ≤ 0.01] or sinus rhythm [sRAGE 782 (576-1039) pg/ml and esRAGE 289 (192-412) pg/ml, p < 0.001]. In multivariable logistic regression analysis, independent predictors of persistent AF were age, heart failure, sRAGE [odds ratio 1.1 per 100 pg/ml, 95% confidence interval (CI) 1.0-1.1, p = 0.001] and esRAGE [odds ratio 1.3 per 100 pg/ml, 95% CI 1.1-1.4, p < 0.001]. Heart failure and age were the only independent predictors of paroxysmal AF. In AF patients, sRAGE [odds ratio 1.1 per 100 pg/ml, 95% CI 1.1-1.2, p = 0.007] and esRAGE [odds ratio 1.3 per 100 pg/ml, 95% CI 1.0-1.5, p = 0.017] independently predicted persistent compared with paroxysmal AF. CONCLUSIONS: Soluble RAGE is elevated in Caucasian patients with AF, and both sRAGE and esRAGE predict the presence of persistent AF.
  • Item
    Thumbnail Image
    Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition
    Burrell, LM ; Gayed, D ; Griggs, K ; Patel, SK ; Velkoska, E ; Bader, M (PUBLIC LIBRARY SCIENCE, 2017-02-13)
    We previously reported that exogenous angiotensin (Ang) 1-7 has adverse cardiac effects in experimental kidney failure due to its action to increase cardiac angiotensin converting enzyme (ACE) activity. This study investigated if the addition of an ACE inhibitor (ACEi) to Ang 1-7 infusion would unmask any beneficial effects of Ang 1-7 on the heart in experimental kidney failure. Male Sprague-Dawley rats underwent subtotal nephrectomy (STNx) and were treated with vehicle, the ACEi ramipril (oral 1mg/kg/day), Ang 1-7 (subcutaneous 24 μg/kg/h) or dual therapy (all groups, n = 12). A control group (n = 10) of sham-operated rats were also studied. STNx led to hypertension, renal impairment, cardiac hypertrophy and fibrosis, and increased both left ventricular ACE2 activity and ACE binding. STNx was not associated with changes in plasma levels of ACE, ACE2 or angiotensin peptides. Ramipril reduced blood pressure, improved cardiac hypertrophy and fibrosis and inhibited cardiac ACE. Ang 1-7 infusion increased blood pressure, cardiac interstitial fibrosis and cardiac ACE binding compared to untreated STNx rats. Although in STNx rats, the addition of ACEi to Ang 1-7 prevented any deleterious cardiac effects of Ang 1-7, a limitation of the study is that the large increase in plasma Ang 1-7 with ramipril may have masked any effect of infused Ang 1-7.
  • Item
    Thumbnail Image
    Reduction in renal ACE2 expression in subtotal nephrectomy in rats is ameliorated with ACE inhibition
    Velkoska, E ; Dean, RG ; Burchill, L ; Levidiotis, V ; Burrell, LM (PORTLAND PRESS LTD, 2010-02)
    Alterations within the RAS (renin-angiotensin system) are pivotal for the development of renal disease. ACE2 (angiotensin-converting enzyme 2) is expressed in the kidney and converts the vasoconstrictor AngII (angiotensin II) into Ang-(1-7), a peptide with vasodilatory and anti-fibrotic actions. Although the expression of ACE2 in the diabetic kidney has been well studied, little is known about its expression in non-diabetic renal disease. In the present study, we assessed ACE2 in rats with acute kidney injury induced by STNx (subtotal nephrectomy). STNx and Control rats received vehicle or ramipril (1 mg. kg (-1) of body weight . day (-1), and renal ACE, ACE2 and mas receptor gene and protein expression were measured 10 days later. STNx rats were characterized by polyuria, proteinuria, hypertension and elevated plasma ACE2 activity (all P<0.01) and plasma Ang-(1-7) (P<0.05) compared with Control rats. There was increased cortical ACE binding and medullary mas receptor expression (P<0.05), but reduced cortical and medullary ACE2 activity in the remnant kidney (P<0.05 and P<0.001 respectively) compared with Control rats. In STNx rats, ramipril reduced blood pressure (P<0.01), polyuria (P<0.05)and plasma ACE2 (P<0.01), increased plasma Ang-(1-7) (P<0.001), and inhibited renal ACE(P<0.001). Ramipril increased both cortical and medullary ACE2 activity (P<0.01), but reduced medullary mas receptor expression (P<0.05). In conclusion, our results show that ACE2 activity is reduced in kidney injury and that ACE inhibition produced beneficial effects in association with increased renal ACE2 activity. As ACE2 both degrades AngII and generates the vasodilator Ang-(1-7), a decrease in renal ACE2 activity, as observed in the present study, has the potential to contribute to the progression of kidney disease.
  • Item
    Thumbnail Image
    Genetic Variation in Kruppel like Factor 15 Is Associated with Left Ventricular Hypertrophy in Patients with Type 2 Diabetes: Discovery and Replication Cohorts
    Patel, SK ; Wai, B ; Lang, CC ; Levin, D ; Palmer, CNA ; Parry, HM ; Velkoska, E ; Harrap, SB ; Srivastava, PM ; Burrell, LM (ELSEVIER, 2017-04)
    Left ventricular (LV) hypertrophy (LVH) is a heritable trait that is common in type 2 diabetes and is associated with the development of heart failure. The transcriptional factor Kruppel like factor 15 (KLF15) is expressed in the heart and acts as a repressor of cardiac hypertrophy in experimental models. This study investigated if KLF15 gene variants were associated with LVH in type 2 diabetes. In stage 1 of a 2-stage approach, patients with type 2 diabetes and no known cardiac disease were prospectively recruited for a transthoracic echocardiographic assessment (Melbourne Diabetes Heart Cohort) (n=318) and genotyping of two KLF15 single nucleotide polymorphisms (SNPs) (rs9838915, rs6796325). In stage 2, the association of KLF15 SNPs with LVH was investigated in the Genetics of Diabetes Audit and Research in Tayside Scotland (Go-DARTS) type 2 diabetes cohort (n=5631). The KLF15 SNP rs9838915 A allele was associated in a dominant manner with LV mass before (P=0.003) and after (P=0.001) adjustment for age, gender, body mass index (BMI) and hypertension, and with adjusted septal (P<0.0001) and posterior (P=0.004) wall thickness. LVH was present in 35% of patients. Over a median follow up of 5.6years, there were 22 (7%) first heart failure hospitalizations. The adjusted risk of heart failure hospitalization was 5.5-fold greater in those with LVH and the rs9838915 A allele compared to those without LVH and the GG genotype (hazard ratio (HR) 5.5 (1.6-18.6), P=0.006). The association of rs9838915 A allele with LVH was replicated in the Go-DARTS cohort. We have identified the KLF15 SNP rs9838915 A allele as a marker of LVH in patients with type 2 diabetes, and replicated these findings in a large independent cohort. Studies are needed to characterize the functional importance of these results, and to determine if the SNP rs9838915 A allele is associated with LVH in other high risk patient cohorts.
  • Item
    Thumbnail Image
    From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension
    Patel, SK ; Velkoska, E ; Freeman, M ; Wai, B ; Lancefield, TF ; Burrell, LM (FRONTIERS MEDIA SA, 2014-06-24)
    Hypertension is a major risk factor for stroke, coronary events, heart and renal failure, and the renin-angiotensin system (RAS) plays a major role in its pathogenesis. Within the RAS, angiotensin converting enzyme (ACE) converts angiotensin (Ang) I into the vasoconstrictor Ang II. An "alternate" arm of the RAS now exists in which ACE2 counterbalances the effects of the classic RAS through degradation of Ang II, and generation of the vasodilator Ang 1-7. ACE2 is highly expressed in the heart, blood vessels, and kidney. The catalytically active ectodomain of ACE2 undergoes shedding, resulting in ACE2 in the circulation. The ACE2 gene maps to a quantitative trait locus on the X chromosome in three strains of genetically hypertensive rats, suggesting that ACE2 may be a candidate gene for hypertension. It is hypothesized that disruption of tissue ACE/ACE2 balance results in changes in blood pressure, with increased ACE2 expression protecting against increased blood pressure, and ACE2 deficiency contributing to hypertension. Experimental hypertension studies have measured ACE2 in either the heart or kidney and/or plasma, and have reported that deletion or inhibition of ACE2 leads to hypertension, whilst enhancing ACE2 protects against the development of hypertension, hence increasing ACE2 may be a therapeutic option for the management of high blood pressure in man. There have been relatively few studies of ACE2, either at the gene or the circulating level in patients with hypertension. Plasma ACE2 activity is low in healthy subjects, but elevated in patients with cardiovascular risk factors or cardiovascular disease. Genetic studies have investigated ACE2 gene polymorphisms with either hypertension or blood pressure, and have produced largely inconsistent findings. This review discusses the evidence regarding ACE2 in experimental hypertension models and the association between circulating ACE2 activity and ACE2 polymorphisms with blood pressure and arterial hypertension in man.
  • Item
    Thumbnail Image
    Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease
    Velkoska, E ; Patel, SK ; Griggs, K ; Burrell, LM ; Joles, JA (PUBLIC LIBRARY SCIENCE, 2016-08-29)
    Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1-7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1-7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined.
  • Item
    Thumbnail Image
    Short-Term Treatment with Diminazene Aceturate Ameliorates the Reduction in Kidney ACE2 Activity in Rats with Subtotal Nephrectomy
    Velkoska, E ; Patel, SK ; Griggs, K ; Pickering, RJ ; Tikellis, C ; Burrell, LM ; Bader, M (PUBLIC LIBRARY SCIENCE, 2015-03-18)
    Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin angiotensin system (RAS) through its role to degrade angiotensin (Ang) II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE), which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx). Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day) for 2 weeks. STNx led to hypertension (P<0.01), kidney hypertrophy (P<0.001) and impaired kidney function (P<0.001) compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01), with reduced cortical and medullary ACE2 activity (P<0.05), and increased urinary ACE2 excretion (P<0.05) compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001), and negatively with creatinine clearance (P=0.04). In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01), increased cortical ACE2 mRNA (P<0.05) and increased cortical and medullary ACE2 activity (P<0.05). The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.