Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Staff to staff transmission as a driver of healthcare worker infections with COVID-19
    Gordon, CL ; Trubiano, JA ; Holmes, NE ; Chua, KYL ; Feldman, J ; Young, G ; Sherry, NL ; Grayson, ML ; Kwong, JC (ELSEVIER INC, 2021-11)
    BACKGROUND: High rates of healthcare worker (HCW) infections due to COVID-19 have been attributed to several factors, including inadequate personal protective equipment (PPE), exposure to a high density of patients with COVID-19, and poor building ventilation. We investigated an increase in the number of staff COVID-19 infections at our hospital to determine the factors contributing to infection and to implement the interventions required to prevent subsequent infections. METHODS: We conducted a single-centre retrospective cohort study of staff working at a tertiary referral hospital who tested positive for SARS-CoV-2 between 25 January 2020 and 25 November 2020. The primary outcome was the source of COVID-19 infection. RESULTS: Of 45 staff who returned a positive test result for SARS-CoV-2, 19 were determined to be acquired at our hospital. Fifteen (15/19; 79% [95% CI: 54-94%]) of these were identified through contact tracing and testing following exposures to other infected staff and were presumed to be staff-to-staff transmission, including an outbreak in 10 healthcare workers (HCWs) linked to a single ward that cared for COVID-19 patients. The staff tearoom was identified as the likely location for transmission, with subsequent reduction in HCW infections and resolution of the outbreak following implementation of enhanced control measures in tearoom facilities. No HCW contacts (0/204; 0% [95% CI: 0-2%]) developed COVID-19 infection following exposure to unrecognised patients with COVID-19. CONCLUSION: Unrecognised infections among staff may be a significant driver of HCW infections in healthcare settings. Control measures should be implemented to prevent acquisition from other staff as well as patient-staff transmission.
  • Item
    Thumbnail Image
    COVID-MATCH65-A prospectively derived clinical decision rule for severe acute respiratory syndrome coronavirus 2
    Trubiano, JA ; Vogrin, S ; Smibert, OC ; Marhoon, N ; Alexander, AA ; Chua, KYL ; James, FL ; Jones, NRL ; Grigg, SE ; Xu, CLH ; Moini, N ; Stanley, SR ; Birrell, MT ; Rose, MT ; Gordon, CL ; Kwong, JC ; Holmes, NE ; Jin, X (PUBLIC LIBRARY SCIENCE, 2020-12-09)
    OBJECTIVES: We report on the key clinical predictors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and present a clinical decision rule that can risk stratify patients for COVID-19. DESIGN, PARTICIPANTS AND SETTING: A prospective cohort of patients assessed for COVID-19 at a screening clinic in Melbourne, Australia. The primary outcome was a positive COVID-19 test from nasopharyngeal swab. A backwards stepwise logistic regression was used to derive a model of clinical variables predictive of a positive COVID-19 test. Internal validation of the final model was performed using bootstrapped samples and the model scoring derived from the coefficients, with modelling performed for increasing prevalence. RESULTS: Of 4226 patients with suspected COVID-19 who were assessed, 2976 patients underwent SARS-CoV-2 testing (n = 108 SARS-CoV-2 positive) and were used to determine factors associated with a positive COVID-19 test. The 7 features associated with a positive COVID-19 test on multivariable analysis were: COVID-19 patient exposure or international travel, Myalgia/malaise, Anosmia or ageusia, Temperature, Coryza/sore throat, Hypoxia-oxygen saturation < 97%, 65 years or older-summarized in the mnemonic COVID-MATCH65. Internal validation showed an AUC of 0.836. A cut-off of ≥ 1.5 points was associated with a 92.6% sensitivity and 99.5% negative predictive value (NPV) for COVID-19. CONCLUSIONS: From the largest prospective outpatient cohort of suspected COVID-19 we define the clinical factors predictive of a positive SARS-CoV-2 test. The subsequent clinical decision rule, COVID-MATCH65, has a high sensitivity and NPV for SARS-CoV-2 and can be employed in the pandemic, adjusted for disease prevalence, to aid COVID-19 risk-assessment and vital testing resource allocation.