Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer
    Thai, A ; Chia, PL ; Russell, PA ; Do, H ; Dobrovic, A ; Mitchell, P ; John, T (WILEY, 2017-09)
    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features.
  • Item
    Thumbnail Image
    Detection of the transforming AKT1 mutation E17K in non-small cell lung cancer by high resolution melting.
    Do, H ; Solomon, B ; Mitchell, PL ; Fox, SB ; Dobrovic, A (Springer Science and Business Media LLC, 2008-05-16)
    BACKGROUND: A recurrent somatic mutation, E17K, in the pleckstrin homology domain of the AKT1 gene, has been recently described in breast, colorectal, and ovarian cancers. AKT1 is a pivotal mediator of signalling pathways involved in cell survival, proliferation and growth. The E17K mutation stimulates downstream signalling and exhibits transforming activity in vitro and in vivo. FINDINGS: We developed a sensitive high resolution melting (HRM) assay to detect the E17K mutation from formalin-fixed paraffin-embedded tumours. We screened 219 non-small cell lung cancer biopsies for the mutation using HRM analysis. Four samples were identified as HRM positive. Subsequent sequencing of those samples confirmed the E17K mutation in one of the cases. A rare single nucleotide polymorphism was detected in each of the remaining three samples. The E17K was found in one of the 14 squamous cell carcinomas. No mutations were found in 141 adenocarcinomas and 39 large cell carcinomas. CONCLUSION: The AKT1 E17K mutation is very rare in lung cancer and might be associated with tumorigenesis in squamous cell carcinoma. HRM represents a rapid cost-effective and robust screening of low frequency mutations such as AKT1 mutations in clinical samples.
  • Item
    Thumbnail Image
    A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma
    Do, H ; Wong, NC ; Murone, C ; John, T ; Solomon, B ; Mitchell, PL ; Dobrovic, A (NATURE PORTFOLIO, 2014-02-26)
    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation.
  • Item
    Thumbnail Image
    Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors
    Chia, PL ; Mitchell, P ; Dobrovic, A ; John, T (DOVE MEDICAL PRESS LTD, 2014)
    Improved understanding of molecular drivers of carcinogenesis has led to significant progress in the management of lung cancer. Patients with non-small-cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) gene rearrangements constitute about 4%-5% of all NSCLC patients. ALK+ NSCLC cells respond well to small molecule ALK inhibitors such as crizotinib; however, resistance invariably develops after several months of treatment. There are now several newer ALK inhibitors, with the next generation of agents targeting resistance mutations. In this review, we will discuss the prevalence and clinical characteristics of ALK+ lung cancer, current treatment options, and future directions in the management of this subset of NSCLC patients.
  • Item
    Thumbnail Image
    High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies
    Do, H ; Krypuy, M ; Mitchell, PL ; Fox, SB ; Dobrovic, A (BMC, 2008-05-21)
    BACKGROUND: Epithelial growth factor receptor (EGFR) and KRAS mutation status have been reported as predictive markers of tumour response to EGFR inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case. METHODS: We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in EGFR exons 18 to 21. We performed HRM analysis for EGFR and KRAS on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues. RESULTS: All 73 samples that harboured EGFR mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for KRAS exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. EGFR and KRAS mutations were mutually exclusive. CONCLUSION: This is the first extensive validation of HRM on FFPE samples using the detection of EGFR exons 18 to 21 mutations and KRAS exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic EGFR and KRAS mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for EGFR and KRAS mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings.