Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer
    Thai, A ; Chia, PL ; Russell, PA ; Do, H ; Dobrovic, A ; Mitchell, P ; John, T (WILEY, 2017-09)
    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features.
  • Item
    Thumbnail Image
    Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain
    Ye, Z ; Chatterton, Z ; Pflueger, J ; Damiano, JA ; McQuillan, L ; Harvey, AS ; Malone, S ; Do, H ; Maixner, W ; Schneider, A ; Nolan, B ; Wood, M ; Lee, WS ; Gillies, G ; Pope, K ; Wilson, M ; Lockhart, PJ ; Dobrovic, A ; Scheffer, IE ; Bahlo, M ; Leventer, RJ ; Lister, R ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2021)
    Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.
  • Item
    Thumbnail Image
    Detection of the transforming AKT1 mutation E17K in non-small cell lung cancer by high resolution melting.
    Do, H ; Solomon, B ; Mitchell, PL ; Fox, SB ; Dobrovic, A (Springer Science and Business Media LLC, 2008-05-16)
    BACKGROUND: A recurrent somatic mutation, E17K, in the pleckstrin homology domain of the AKT1 gene, has been recently described in breast, colorectal, and ovarian cancers. AKT1 is a pivotal mediator of signalling pathways involved in cell survival, proliferation and growth. The E17K mutation stimulates downstream signalling and exhibits transforming activity in vitro and in vivo. FINDINGS: We developed a sensitive high resolution melting (HRM) assay to detect the E17K mutation from formalin-fixed paraffin-embedded tumours. We screened 219 non-small cell lung cancer biopsies for the mutation using HRM analysis. Four samples were identified as HRM positive. Subsequent sequencing of those samples confirmed the E17K mutation in one of the cases. A rare single nucleotide polymorphism was detected in each of the remaining three samples. The E17K was found in one of the 14 squamous cell carcinomas. No mutations were found in 141 adenocarcinomas and 39 large cell carcinomas. CONCLUSION: The AKT1 E17K mutation is very rare in lung cancer and might be associated with tumorigenesis in squamous cell carcinoma. HRM represents a rapid cost-effective and robust screening of low frequency mutations such as AKT1 mutations in clinical samples.
  • Item
    Thumbnail Image
    A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma
    Do, H ; Wong, NC ; Murone, C ; John, T ; Solomon, B ; Mitchell, PL ; Dobrovic, A (NATURE PORTFOLIO, 2014-02-26)
    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation.
  • Item
    Thumbnail Image
    Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations
    Tsao, SC-H ; Weiss, J ; Hudson, C ; Christophi, C ; Cebon, J ; Behren, A ; Dobrovic, A (NATURE PORTFOLIO, 2015-06-22)
    We assessed the utility of droplet digital PCR (ddPCR) to evaluate the potential of using circulating tumour DNA (ctDNA) as a post therapy monitoring tool in melanoma by comparing it to serum LDH levels and RECIST scores. ddPCR was shown to be reliable in distinguishing mutant from wild type alleles with no false positives. Subsequently, we quantified ctDNA ((V600E)BRAF,(V600K)BRAF or (Q61H)NRAS) in 6 stage IV melanoma patients across several time points during their treatment course. All tested patients had detectable ctDNA, which exhibited dynamic changes corresponding to the changes in their disease status. The ctDNA levels fell upon treatment response and rose with detectable disease progression. In our group of patients, ctDNA was more consistent and informative than LDH as a blood-based biomarker. In addition, BRAF mutant ctDNA as detected by ddPCR could be used diagnostically where the tumour block was unavailable. In conclusion, this study demonstrates the applicability of using ddPCR to detect and quantify ctDNA in the plasma of melanoma patients.
  • Item
    Thumbnail Image
    Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors
    Anaka, M ; Hudson, C ; Lo, P-H ; Do, H ; Caballero, OL ; Davis, ID ; Dobrovic, A ; Cebon, J ; Behren, A (BMC, 2013-10-11)
    BACKGROUND: Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. METHODS: Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. RESULTS: MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. CONCLUSION: Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.
  • Item
    Thumbnail Image
    Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors
    Chia, PL ; Mitchell, P ; Dobrovic, A ; John, T (DOVE MEDICAL PRESS LTD, 2014)
    Improved understanding of molecular drivers of carcinogenesis has led to significant progress in the management of lung cancer. Patients with non-small-cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) gene rearrangements constitute about 4%-5% of all NSCLC patients. ALK+ NSCLC cells respond well to small molecule ALK inhibitors such as crizotinib; however, resistance invariably develops after several months of treatment. There are now several newer ALK inhibitors, with the next generation of agents targeting resistance mutations. In this review, we will discuss the prevalence and clinical characteristics of ALK+ lung cancer, current treatment options, and future directions in the management of this subset of NSCLC patients.
  • Item
    Thumbnail Image
    Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome
    Hildebrand, MS ; Harvey, AS ; Malone, S ; Damiano, JA ; Do, H ; Ye, Z ; McQuillan, L ; Maixner, W ; Kalnins, R ; Nolan, B ; Wood, M ; Ozturk, E ; Jones, NC ; Gillies, G ; Pope, K ; Lockhart, PJ ; Dobrovic, A ; Leventer, RJ ; Scheffer, IE ; Berkovic, SF (LIPPINCOTT WILLIAMS & WILKINS, 2018-06)
    OBJECTIVE: To determine whether the GNAQ R183Q mutation is present in the forme fruste cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis. METHODS: We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQ mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations. RESULTS: Low levels of the GNAQ mutation were detected in the brain tissue of all 4 cases-ranging from 0.42% to 7.1% frequency-but not in blood-derived DNA. Molecular evaluation confirmed the diagnosis in 1 case in which the radiologic and pathologic data were equivocal. CONCLUSIONS: We detected the mutation at low levels, consistent with mosaicism in the brain or skin (1.0%-18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful where conventional diagnosis is uncertain.
  • Item
    Thumbnail Image
    BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival
    Lee, EF ; Harris, TJ ; Tran, S ; Evangelista, M ; Arulananda, S ; John, T ; Ramnac, C ; Hobbs, C ; Zhu, H ; Gunasingh, G ; Segal, D ; Behren, A ; Cebon, J ; Dobrovic, A ; Mariadason, JM ; Strasser, A ; Rohrbeck, L ; Haass, NK ; Herold, MJ ; Fairlie, WD (NATURE PUBLISHING GROUP, 2019-04-24)
    Malignant melanoma is one of the most difficult cancers to treat due to its resistance to chemotherapy. Despite recent successes with BRAF inhibitors and immune checkpoint inhibitors, many patients do not respond or become resistant to these drugs. Hence, alternative treatments are still required. Due to the importance of the BCL-2-regulated apoptosis pathway in cancer development and drug resistance, it is of interest to establish which proteins are most important for melanoma cell survival, though the outcomes of previous studies have been conflicting. To conclusively address this question, we tested a panel of established and early passage patient-derived cell lines against several BH3-mimetic drugs designed to target individual or subsets of pro-survival BCL-2 proteins, alone and in combination, in both 2D and 3D cell cultures. None of the drugs demonstrated significant activity as single agents, though combinations targeting MCL-1 plus BCL-XL, and to a lesser extent BCL-2, showed considerable synergistic killing activity that was elicited via both BAX and BAK. Genetic deletion of BFL-1 in cell lines that express it at relatively high levels only had minor impact on BH3-mimetic drug sensitivity, suggesting it is not a critical pro-survival protein in melanoma. Combinations of MCL-1 inhibitors with BRAF inhibitors also caused only minimal additional melanoma cell killing over each drug alone, whilst combinations with the proteasome inhibitor bortezomib was more effective in multiple cell lines. Our data show for the first time that therapies targeting specific combinations of BCL-2 pro-survival proteins, namely MCL-1 plus BCL-XL and MCL-1 plus BCL-2, could have significant benefit for the treatment of melanoma.
  • Item
    Thumbnail Image
    High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies
    Do, H ; Krypuy, M ; Mitchell, PL ; Fox, SB ; Dobrovic, A (BMC, 2008-05-21)
    BACKGROUND: Epithelial growth factor receptor (EGFR) and KRAS mutation status have been reported as predictive markers of tumour response to EGFR inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case. METHODS: We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in EGFR exons 18 to 21. We performed HRM analysis for EGFR and KRAS on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues. RESULTS: All 73 samples that harboured EGFR mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for KRAS exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. EGFR and KRAS mutations were mutually exclusive. CONCLUSION: This is the first extensive validation of HRM on FFPE samples using the detection of EGFR exons 18 to 21 mutations and KRAS exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic EGFR and KRAS mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for EGFR and KRAS mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings.