Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    No Preview Available
    Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40
    Morgan, AT ; Scerri, TS ; Vogel, AP ; Reid, CA ; Quach, M ; Jackson, VE ; McKenzie, C ; Burrows, EL ; Bennett, MF ; Turner, SJ ; Reilly, S ; Horton, SE ; Block, S ; Kefalianos, E ; Frigerio-Domingues, C ; Sainz, E ; Rigbye, KA ; Featherby, TJ ; Richards, KL ; Kueh, A ; Herold, MJ ; Corbett, MA ; Gecz, J ; Helbig, I ; Thompson-Lake, DGY ; Liegeois, FJ ; Morell, RJ ; Hung, A ; Drayna, D ; Scheffer, IE ; Wright, DK ; Bahlo, M ; Hildebrand, MS (OXFORD UNIV PRESS, 2023-12-01)
    Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.
  • Item
    No Preview Available
    Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5.
    Happ, HC ; Sadleir, LG ; Zemel, M ; de Valles-Ibáñez, G ; Hildebrand, MS ; McConkie-Rosell, A ; McDonald, M ; May, H ; Sands, T ; Aggarwal, V ; Elder, C ; Feyma, T ; Bayat, A ; Møller, RS ; Fenger, CD ; Klint Nielsen, JE ; Datta, AN ; Gorman, KM ; King, MD ; Linhares, ND ; Burton, BK ; Paras, A ; Ellard, S ; Rankin, J ; Shukla, A ; Majethia, P ; Olson, RJ ; Muthusamy, K ; Schimmenti, LA ; Starnes, K ; Sedláčková, L ; Štěrbová, K ; Vlčková, M ; Laššuthová, P ; Jahodová, A ; Porter, BE ; Couque, N ; Colin, E ; Prouteau, C ; Collet, C ; Smol, T ; Caumes, R ; Vansenne, F ; Bisulli, F ; Licchetta, L ; Person, R ; Torti, E ; McWalter, K ; Webster, R ; Gerard, EE ; Lesca, G ; Szepetowski, P ; Scheffer, IE ; Mefford, HC ; Carvill, GL (Ovid Technologies (Wolters Kluwer Health), 2023-02-07)
    BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.
  • Item
    No Preview Available
    Recognition and epileptology of protracted CLN3 disease
    Cameron, JM ; Damiano, JA ; Grinton, B ; Carney, PW ; McKelvie, P ; Silbert, P ; Lawn, N ; Scheffer, IE ; Oliver, KL ; Hildebrand, MS ; Berkovic, SF (WILEY, 2023-07)
    OBJECTIVE: This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder. METHODS: We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families. RESULTS: Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort. SIGNIFICANCE: We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.
  • Item
    No Preview Available
    WWOX developmental and epileptic encephalopathy: Understanding the epileptology and the mortality risk
    Oliver, KL ; Trivisano, M ; Mandelstam, SA ; De Dominicis, A ; Francis, DI ; Green, TE ; Muir, AM ; Chowdhary, A ; Hertzberg, C ; Goldhahn, K ; Metreau, J ; Prager, C ; Pinner, J ; Cardamone, M ; Myers, KA ; Leventer, RJ ; Lesca, G ; Bahlo, M ; Hildebrand, MS ; Mefford, HC ; Kaindl, AM ; Specchio, N ; Scheffer, IE (WILEY, 2023-05)
    OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.
  • Item
    No Preview Available
    Mosaic variants detectable in blood extend the clinicogenetic spectrum of GLI3-related hypothalamic hamartoma
    Green, TE ; Bennett, MF ; Immisch, I ; Freeman, JL ; Klein, KM ; Kerrigan, JF ; Vadlamudi, L ; Heinzen, EL ; Scheffer, IE ; Harvey, AS ; Rosenow, F ; Hildebrand, MS ; Berkovic, SF (Elsevier BV, 2023)
  • Item
    No Preview Available
    Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy
    Khoshkhoo, S ; Wang, Y ; Chahine, Y ; Erson-Omay, EZ ; Robert, SM ; Kiziltug, E ; Damisah, EC ; Nelson-Williams, C ; Zhu, G ; Kong, W ; Huang, AY ; Stronge, E ; Phillips, HW ; Chhouk, BH ; Bizzotto, S ; Chen, MH ; Adikari, TN ; Ye, Z ; Witkowski, T ; Lai, D ; Lee, N ; Lokan, J ; Scheffer, IE ; Berkovic, SF ; Haider, S ; Hildebrand, MS ; Yang, E ; Gunel, M ; Lifton, RP ; Richardson, RM ; Bluemcke, I ; Alexandrescu, S ; Huttner, A ; Heinzen, EL ; Zhu, J ; Poduri, A ; DeLanerolle, N ; Spencer, DD ; Lee, EA ; Walsh, CA ; Kahle, KT (AMER MEDICAL ASSOC, 2023-06)
    IMPORTANCE: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. OBJECTIVE: To test the association between pathogenic somatic variants in the hippocampus and MTLE. DESIGN, SETTING, AND PARTICIPANTS: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. EXPOSURES: Drug-resistant MTLE. MAIN OUTCOMES AND MEASURES: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. RESULTS: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. CONCLUSIONS AND RELEVANCE: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.
  • Item
    Thumbnail Image
    Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies
    Ye, Z ; Bennett, MF ; Bahlo, M ; Scheffer, IE ; Berkovic, SF ; Perucca, P ; Hildebrand, MS (TAYLOR & FRANCIS LTD, 2021-11-02)
    INTRODUCTION: Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED: The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION: These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
  • Item
    Thumbnail Image
    Genetic aetiologies for childhood speech disorder: novel pathways co-expressed during brain development
    Kaspi, A ; Hildebrand, MS ; Jackson, VE ; Braden, R ; van Reyk, O ; Howell, T ; Debono, S ; Lauretta, M ; Morison, L ; Coleman, MJ ; Webster, R ; Coman, D ; Goel, H ; Wallis, M ; Dabscheck, G ; Downie, L ; Baker, EK ; Parry-Fielder, B ; Ballard, K ; Harrold, E ; Ziegenfusz, S ; Bennett, MF ; Robertson, E ; Wang, L ; Boys, A ; Fisher, SE ; Amor, DJ ; Scheffer, IE ; Bahlo, M ; Morgan, AT (SPRINGERNATURE, 2023-04)
    Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.
  • Item
    Thumbnail Image
    Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions
    Green, TE ; Motelow, JE ; Bennett, MF ; Ye, Z ; Bennett, CA ; Griffin, NG ; Damiano, JA ; Leventer, RJ ; Freeman, JL ; Harvey, AS ; Lockhart, PJ ; Sadleir, LG ; Boys, A ; Scheffer, IE ; Major, H ; Darbro, BW ; Bahlo, M ; Goldstein, DB ; Kerrigan, JF ; Heinzen, EL ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2022-07-21)
    Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.
  • Item
    Thumbnail Image
    Atypical development of Broca's area in a large family with inherited stuttering
    Thompson-Lake, DGY ; Scerri, TS ; Block, S ; Turner, SJ ; Reilly, S ; Kefalianos, E ; Bonthrone, AF ; Helbig, I ; Bahlo, M ; Scheffer, IE ; Hildebrand, MS ; Liegeois, FJ ; Morgan, AT (OXFORD UNIV PRESS, 2022-04-29)
    Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.