Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 77
  • Item
    Thumbnail Image
    Induction of delayed-type hypersensitivity to azobenzenearsonate by a monoclonal anti-idiotype antibody.
    Thomas, WR ; Morahan, G ; Walker, ID ; Miller, JF (Rockefeller University Press, 1981-03-01)
    Azobenzenearsonate (ABA)-specific sensitivity was induced in A/J mice by injecting a monoclonal anti-idiotype reagent, 14A, directed against a determinant present on a minor subpopulation of immunoglobulin molecules within the anti-ABA antibodies of A/J mice. Sensitivity was transferrable by purified T cells and this was abrogated by treating the cells with 14A, rabbit anti-mouse immunoglobulin and complement, not by treatment with only the last two reagents. The transfer was restricted by the K-end of the major histocompatibility complex.
  • Item
    Thumbnail Image
    Identification of a T1D susceptibility gene.
    Morahan, G (Hindawi Limited, 2001-05-01)
    It is not known what causes type 1 diabetes (T1D) which affects over 1 million people in the U.S. alone. Each year, 30,000 young people in the U.S. develop this disease and depend on insulin injections thereafter. Because of the huge cost to the individual, the family, and to society in increased health care costs, it is important to find what makes these people susceptible. The disease process itself is clear: the individual's immune system, the T lymphocytes in particular, attack and destroy the body's insulin-producing cells. But how and why this autoimmune process starts or proceeds unregulated is still not known.
  • Item
    Thumbnail Image
    A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3.
    Concannon, P ; Onengut-Gumuscu, S ; Todd, JA ; Smyth, DJ ; Pociot, F ; Bergholdt, R ; Akolkar, B ; Erlich, HA ; Hilner, JE ; Julier, C ; Morahan, G ; Nerup, J ; Nierras, CR ; Chen, W-M ; Rich, SS ; Type 1 Diabetes Genetics Consortium, (American Diabetes Association, 2008-10)
    OBJECTIVE: The Type 1 Diabetes Genetics Consortium (T1DGC) has assembled and genotyped a large collection of multiplex families for the purpose of mapping genomic regions linked to type 1 diabetes. In the current study, we tested for evidence of loci associated with type 1 diabetes utilizing genome-wide linkage scan data and family-based association methods. RESEARCH DESIGN AND METHODS: A total of 2,496 multiplex families with type 1 diabetes were genotyped with a panel of 6,090 single nucleotide polymorphisms (SNPs). Evidence of association to disease was evaluated by the pedigree disequilibrium test. Significant results were followed up by genotyping and analyses in two independent sets of samples: 2,214 parent-affected child trio families and a panel of 7,721 case and 9,679 control subjects. RESULTS- Three of the SNPs most strongly associated with type 1 diabetes localized to previously identified type 1 diabetes risk loci: INS, IFIH1, and KIAA0350. A fourth strongly associated SNP, rs876498 (P = 1.0 x 10(-4)), occurred in the sixth intron of the UBASH3A locus at chromosome 21q22.3. Support for this disease association was obtained in two additional independent sample sets: families with type 1 diabetes (odds ratio [OR] 1.06 [95% CI 1.00-1.11]; P = 0.023) and case and control subjects (1.14 [1.09-1.19]; P = 7.5 x 10(-8)). CONCLUSIONS: The T1DGC 6K SNP scan and follow-up studies reported here confirm previously reported type 1 diabetes associations at INS, IFIH1, and KIAA0350 and identify an additional disease association on chromosome 21q22.3 in the UBASH3A locus (OR 1.10 [95% CI 1.07-1.13]; P = 4.4 x 10(-12)). This gene and its flanking regions are now validated targets for further resequencing, genotyping, and functional studies in type 1 diabetes.
  • Item
    Thumbnail Image
    Insulin expressing hepatocytes not destroyed in transgenic NOD mice.
    Tabiin, MT ; White, CP ; Morahan, G ; Tuch, BE (Springer Science and Business Media LLC, 2004-11-08)
    BACKGROUND: The liver has been suggested as a suitable target organ for gene therapy of Type 1 diabetes. However, the fundamental issue whether insulin-secreting hepatocytes in vivo will be destroyed by the autoimmune processes that kill pancreatic beta cells has not been fully addressed. It is possible that the insulin secreting liver cells will be destroyed by the immune system because hepatocytes express major histocompatibility complex (MHC) class I molecules and exhibit constitutive Fas expression; moreover the liver has antigen presenting activity. Together with previous reports that proinsulin is a possible autoantigen in the development of Type 1 diabetes, the autoimmune destruction of insulin producing liver cells is a distinct possibility. METHODS: To address this question, transgenic Non-Obese Diabetic (NOD) mice which express insulin in the liver were made using the Phosphoenolpyruvate Carboxykinase (PEPCK) promoter to drive the mouse insulin I gene (Ins). RESULTS: The liver cells were found to possess preproinsulin mRNA, translate (pro)insulin in vivo and release it when exposed to 100 nmol/l glucagon in vitro. The amount of insulin produced was however significantly lower than that produced by the pancreas. The transgenic PEPCK-Ins NOD mice became diabetic at 20-25 weeks of age, with blood glucose levels of 24.1 +/- 1.7 mmol/l. Haematoxylin and eosin staining of liver sections from these transgenic NOD PEPCK-Ins mice revealed the absence of an infiltrate of immune cells, a feature that characterised the pancreatic islets of these mice. CONCLUSIONS: These data show that hepatocytes induced to produce (pro)insulin in NOD mice are not destroyed by an ongoing autoimmune response; furthermore the expression of (pro)insulin in hepatocytes is insufficient to prevent development of diabetes in NOD mice. These results support the use of liver cells as a potential therapy for type 1 diabetes. However it is possible that a certain threshold level of (pro)insulin production might have to be reached to trigger the autoimmune response.
  • Item
    Thumbnail Image
    JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells
    Gurzov, EN ; Ortis, F ; Bakiri, L ; Wagner, EF ; Eizirik, DL ; Maedler, K (PUBLIC LIBRARY SCIENCE, 2008-08-21)
    Cytokines contribute to pancreatic beta-cell apoptosis in type 1 diabetes (T1D) by modulation of beta-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated beta-cell dysfunction and death. The cytokines IL-1beta+IFN-gamma induced an early and transitory upregulation of JunB by NF-kappaB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary beta-cells. JunB knockdown beta-cells and junB(-/-) fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected beta-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis.
  • Item
    Thumbnail Image
    Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line
    Gurzov, EN ; Nabha, SM ; Yamamoto, H ; Meng, H ; Scharovsky, OG ; Bonfil, RD (BMC, 2007-10-01)
    BACKGROUND: Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the in vitro and in vivo effect of cellular soluble factors produced by the epithelial cell line on tumor cells. METHODS: Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The in vitro effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The in vivo anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in nude mice by B16-F10 and HeLa cells. RESULTS: LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM-234mf cells were alpha-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive in vitro and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234ep-derived factors were able to inhibit the in vitro growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G0/G1 phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in nude mice. CONCLUSION: Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic activities induced by tumor-derived epithelial cells.
  • Item
    Thumbnail Image
    Complementary signaling through flt3 and interleukin-7 receptor alpha is indispensable for fetal and adult B cell genesis.
    Sitnicka, E ; Brakebusch, C ; Martensson, I-L ; Svensson, M ; Agace, WW ; Sigvardsson, M ; Buza-Vidas, N ; Bryder, D ; Cilio, CM ; Ahlenius, H ; Maraskovsky, E ; Peschon, JJ ; Jacobsen, SEW (Rockefeller University Press, 2003-11-17)
    Extensive studies of mice deficient in one or several cytokine receptors have failed to support an indispensable role of cytokines in development of multiple blood cell lineages. Whereas B1 B cells and Igs are sustained at normal levels throughout life of mice deficient in IL-7, IL-7Ralpha, common cytokine receptor gamma chain, or flt3 ligand (FL), we report here that adult mice double deficient in IL-7Ralpha and FL completely lack visible LNs, conventional IgM+ B cells, IgA+ plasma cells, and B1 cells, and consequently produce no Igs. All stages of committed B cell progenitors are undetectable in FL-/- x IL-7Ralpha-/- BM that also lacks expression of the B cell commitment factor Pax5 and its direct target genes. Furthermore, in contrast to IL-7Ralpha-/- mice, FL-/- x IL-7Ralpha-/- mice also lack mature B cells and detectable committed B cell progenitors during fetal development. Thus, signaling through the cytokine tyrosine kinase receptor flt3 and IL-7Ralpha are indispensable for fetal and adult B cell development.
  • Item
    Thumbnail Image
    Fas transduces activation signals in normal human T lymphocytes.
    Alderson, MR ; Armitage, RJ ; Maraskovsky, E ; Tough, TW ; Roux, E ; Schooley, K ; Ramsdell, F ; Lynch, DH (Rockefeller University Press, 1993-12-01)
    The Fas gene encodes a cell surface molecule that is a member of the the nerve growth factor/tumor necrosis factor receptor family of proteins and can mediate programmed cell death (apoptosis) in certain transformed cell lines. To characterize further the biological function of Fas, particularly with regard to its function in normal cells, a panel of monoclonal antibodies (mAbs) was generated against the extracellular portion of human Fas. Some of these mAbs induced apoptosis in transformed cell lines expressing Fas, but only when immobilized on the culture vessel. One of the new Fas mAbs (M38) was used for studies on normal lymphoid cells and found to stimulate the proliferation of purified human T cells and thymocytes when immobilized on culture wells along with CD3 antibody. T cell proliferation induced by Fas mAb was largely interleukin 2 independent and was demonstrated to be due to a direct effect on the precursor T cell. Thus, the data demonstrate that in addition to a role in the induction of apoptosis in certain transformed cell lines, the Fas protein may also play an important role in the activation and proliferation of normal T cells.
  • Item
    Thumbnail Image
    Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice.
    Peschon, JJ ; Morrissey, PJ ; Grabstein, KH ; Ramsdell, FJ ; Maraskovsky, E ; Gliniak, BC ; Park, LS ; Ziegler, SF ; Williams, DE ; Ware, CB ; Meyer, JD ; Davison, BL (Rockefeller University Press, 1994-11-01)
    Interleukin 7 (IL-7) stimulates the proliferation of B cell progenitors, thymocytes, and mature T cells through an interaction with a high affinity receptor (IL-7R) belonging to the hematopoietin receptor superfamily. We have further addressed the role of IL-7 and its receptor during B and T cell development by generating mice genetically deficient in IL-7R. Mutant mice display a profound reduction in thymic and peripheral lymphoid cellularity. Analyses of lymphoid progenitor populations in IL-7R-deficient mice define precisely those developmental stages affected by the mutation and reveal a critical role for IL-7R during early lymphoid development. Significantly, these studies indicate that the phase of thymocyte expansion occurring before the onset of T cell receptor gene rearrangement is critically dependent upon, and mediated by the high affinity receptor for IL-7.
  • Item
    Thumbnail Image
    Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant.
    Pulendran, B ; Smith, JL ; Jenkins, M ; Schoenborn, M ; Maraskovsky, E ; Maliszewski, CR (Rockefeller University Press, 1998-12-07)
    Injections of soluble proteins are poorly immunogenic, and often elicit antigen-specific tolerance. The mechanism of this phenomenon has been an enduring puzzle, but it has been speculated that tolerance induction may be due to antigen presentation by poorly stimulatory, resting B cells, which lack specific immunoglobulin receptors for the protein. In contrast, adjuvants, or infectious agents, which cause the release of proinflammatory cytokines such as tumor necrosis factor alpha and interleukin 1beta in vivo are believed to recruit and activate professional antigen-presenting cells to the site(s) of infection, thereby eliciting immunity. Here we show that administration of Flt3 ligand (FL), a cytokine capable of inducing large numbers of dendritic cells (DCs) in vivo, (a) dramatically enhances the sensitivity of antigen-specific B and T cell responses to systemic injection of a soluble protein, through a CD40-CD40 ligand-dependent mechanism; (b) influences the class of antibody produced; and (c) enables productive immune responses to otherwise tolerogenic protocols. These data support the hypothesis that the delicate balance between immunity and tolerance in vivo is pivotally controlled by DCs, and underscore the potential of FL as a vaccine adjuvant for immunotherapy in infectious disease and other clinical settings.