Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 53
  • Item
    Thumbnail Image
    Trajectories of depressive and anxiety symptoms in older adults: a 6-year prospective cohort study
    Holmes, SE ; Esterlis, I ; Mazure, CM ; Lim, YY ; Ames, D ; Rainey-Smith, S ; Fowler, C ; Ellis, K ; Martins, RN ; Salvado, O ; Dore, V ; Villemagne, VL ; Rowe, CC ; Laws, SM ; Masters, CL ; Pietrzak, RH ; Maruff, P (WILEY, 2018-02)
  • Item
    Thumbnail Image
    Amyloid burden and incident depressive symptoms in cognitively normal older adults
    Harrington, KD ; Gould, E ; Lim, YY ; Ames, D ; Pietrzak, RH ; Rembach, A ; Rainey-Smith, S ; Martins, RN ; Salvado, O ; Villemagne, VL ; Rowe, CC ; Masters, CL ; Maruff, P (WILEY, 2017-04)
  • Item
    Thumbnail Image
    Aβ Imaging: feasible, pertinent, and vital to progress in Alzheimer's disease
    Villemagne, VL ; Klunk, WE ; Mathis, CA ; Rowe, CC ; Brooks, DJ ; Hyman, BT ; Ikonomovic, MD ; Ishii, K ; Jack, CR ; Jagust, WJ ; Johnson, KA ; Koeppe, RA ; Lowe, VJ ; Masters, CL ; Montine, TJ ; Morris, JC ; Nordberg, A ; Petersen, RC ; Reiman, EM ; Selkoe, DJ ; Sperling, RA ; Van Laere, K ; Weiner, MW ; Drzezga, A (SPRINGER, 2012-02)
  • Item
    Thumbnail Image
    APOE and BDNF polymorphisms moderate amyloid β-related cognitive decline in preclinical Alzheimer's disease
    Lim, YY ; Villemagne, VL ; Laws, SM ; Pietrzak, RH ; Snyder, PJ ; Ames, D ; Ellis, KA ; Harrington, K ; Rembach, A ; Martins, RN ; Rowe, CC ; Masters, CL ; Maruff, P (NATURE PUBLISHING GROUP, 2015-11)
    Accumulation of β-amyloid (Aβ) in the brain is associated with memory decline in healthy individuals as a prelude to Alzheimer's disease (AD). Genetic factors may moderate this decline. We examined the role of apolipoprotein E (ɛ4 carrier[ɛ4(+)], ɛ4 non-carrier[ɛ4(-)]) and brain-derived neurotrophic factor (BDNF(Val/Val), BDNF(Met)) in the extent to which they moderate Aβ-related memory decline. Healthy adults (n=333, Mage=70 years) enrolled in the Australian Imaging, Biomarkers and Lifestyle study underwent Aβ neuroimaging. Neuropsychological assessments were conducted at baseline, 18-, 36- and 54-month follow-ups. Aβ positron emission tomography neuroimaging was used to classify participants as Aβ(-) or Aβ(+). Relative to Aβ(-)ɛ4(-), Aβ(+)ɛ4(+) individuals showed significantly faster rates of cognitive decline over 54 months across all domains (d=0.40-1.22), while Aβ(+)ɛ4(-) individuals showed significantly faster decline only on verbal episodic memory (EM). There were no differences in rates of cognitive change between Aβ(-)ɛ4(-) and Aβ(-)ɛ4(+) groups. Among Aβ(+) individuals, ɛ4(+)/BDNF(Met) participants showed a significantly faster rate of decline on verbal and visual EM, and language over 54 months compared with ɛ4(-)/BDNF(Val/Val) participants (d=0.90-1.02). At least two genetic loci affect the rate of Aβ-related cognitive decline. Aβ(+)ɛ4(+)/BDNF(Met) individuals can expect to show clinically significant memory impairment after 3 years, whereas Aβ(+)ɛ4(+)/BDNF(Val/Val) individuals can expect a similar degree of impairment after 10 years. Little decline over 54 months was observed in the Aβ(-) and Aβ(+) ɛ4(-) groups, irrespective of BDNF status. These data raise important prognostic issues in managing preclinical AD, and should be considered in designing secondary preventative clinical trials.
  • Item
    Thumbnail Image
    Sensitivity of composite scores to amyloid burden in preclinical Alzheimer's disease: Introducing the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults composite score.
    Lim, YY ; Snyder, PJ ; Pietrzak, RH ; Ukiqi, A ; Villemagne, VL ; Ames, D ; Salvado, O ; Bourgeat, P ; Martins, RN ; Masters, CL ; Rowe, CC ; Maruff, P (Wiley, 2016)
    INTRODUCTION: Cognitive composite scores developed for preclinical Alzheimer's disease (AD) often consist of multiple cognitive domains as they may provide greater sensitivity to detect β-amyloid (Aβ)-related cognitive decline than episodic memory (EM) composite scores alone. However, this has never been empirically tested. We compared the rate of cognitive decline associated with high Aβ (Aβ+) and very high Aβ (Aβ++) in cognitively normal (CN) older adults on three multidomain cognitive composite scores and one single-domain (EM) composite score. METHODS: CN older adults (n = 423) underwent Aβ neuroimaging and completed neuropsychological assessments at baseline, and at 18-, 36-, 54-, and 72-month follow-ups. Four cognitive composite scores were computed: the ADCS-PACC (ADCS-Preclinical Alzheimer Cognitive Composite), ADCS-PACC without the inclusion of the mini-mental state examination (MMSE), an EM composite, and the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults (ZAVEN) composite. RESULTS: Compared with Aβ+ CN older adults, Aβ++ CN older adults showed faster rates of decline across all cognitive composites, with the largest decline observed for ZAVEN composite (d = 1.07). Similarly, compared with Aβ- CN older adults, Aβ+ CN older adults also showed faster rates of cognitive decline, but only for the ADCS-PACC no MMSE (d = 0.43), EM (d = 0.53), and ZAVEN (d = 0.50) composites. DISCUSSION: Aβ-related cognitive decline is best detected using validated neuropsychological instruments. Removal of the MMSE from the ADCS-PACC and replacing it with a test of executive function (verbal fluency; i.e., the ZAVEN) rendered this composite more sensitive even in detecting Aβ-related cognitive decline between Aβ+ and Aβ++ CN older adults.
  • Item
    Thumbnail Image
    Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group
    Su, Y ; Blazey, TM ; Owen, CJ ; Christensen, JJ ; Friedrichsen, K ; Joseph-Mathurin, N ; Wang, Q ; Hornbeck, RC ; Ances, BM ; Snyder, AZ ; Cash, LA ; Koeppe, RA ; Klunk, WE ; Galasko, D ; Brickman, AM ; McDade, E ; Ringman, JM ; Thompson, PM ; Saykin, AJ ; Ghetti, B ; Sperling, RA ; Johnson, KA ; Salloway, SP ; Schofield, PR ; Masters, CL ; Villemagne, VL ; Fox, NC ; Foerster, S ; Chen, K ; Reiman, EM ; Xiong, C ; Marcus, DS ; Weiner, MW ; Morris, JC ; Bateman, RJ ; Benzinger, TLS ; Herholz, K (PUBLIC LIBRARY SCIENCE, 2016-03-24)
    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.
  • Item
    Thumbnail Image
    A Multi-Cohort Study of ApoE ε4 and Amyloid-β Effects on the Hippocampus in Alzheimer's Disease
    Khan, W ; Giampietro, V ; Banaschewski, T ; Barker, GJ ; Bokde, ALW ; Buechel, C ; Conrod, P ; Flor, H ; Frouin, V ; Garavan, H ; Gowland, P ; Heinz, A ; Ittermann, B ; Lemaitre, H ; Nees, F ; Paus, T ; Pausova, Z ; Rietschel, M ; Smolka, MN ; Stroehle, A ; Gallinat, J ; Vellas, B ; Soininen, H ; Kloszewska, I ; Tsolaki, M ; Mecocci, P ; Spenger, C ; Villemagne, VL ; Masters, CL ; Muehlboeck, J-S ; Backman, L ; Fratiglioni, L ; Kalpouzos, G ; Wahlund, L-O ; Schumann, G ; Lovestone, S ; Williams, SCR ; Westman, E ; Simmons, A ; Adamson, M (IOS PRESS, 2017)
    The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-β (Aβ) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compared hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in ɛ4 carriers with positron emission tomography Aβ who were dichotomized (Aβ+/Aβ-) using previous cut-offs. We found a linear reduction in hippocampal volumes with ɛ4 carriers possessing the smallest volumes, ɛ3 carriers possessing intermediate volumes, and ɛ2 carriers possessing the largest volumes. Moreover, AD and MCI ɛ4 carriers possessed the smallest hippocampal volumes and control ɛ2 carriers possessed the largest hippocampal volumes. Subjects with both APOE ɛ4 and Aβ+ had the lowest hippocampal volumes when compared to Aβ- ɛ4 carriers, suggesting a synergistic relationship between APOE ɛ4 and Aβ. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE ɛ4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
  • Item
    Thumbnail Image
    Insulin resistance is associated with reductions in specific cognitive domains and increases in CSF tau in cognitively normal adults
    Laws, SM ; Gaskin, S ; Woodfield, A ; Srikanth, V ; Bruce, D ; Fraser, PE ; Porter, T ; Newsholme, P ; Wijesekara, N ; Burnham, S ; Dore, V ; Li, Q-X ; Maruff, P ; Masters, CL ; Rainey-Smith, S ; Rowe, CC ; Salvado, O ; Villemagne, VL ; Martins, RN ; Verdile, G (NATURE PORTFOLIO, 2017-08-29)
    Growing evidence supports the hypothesis that type 2 diabetes (T2D) increases the risk of developing dementia. Experimental evidence from mouse models demonstrates that the induction of T2D/insulin resistance (IR) can promote the accumulation of Alzheimer's disease (AD) pathological features. However, the association of T2D with pathological and clinical phenotypes in humans is unclear. Here we investigate the relationship of indices of IR (HOMA-IR) and pancreatic β-cell function (HOMA-B) with cognitive performance across several domains (Verbal/Visual Episodic Memory, Executive Function, Language and a measure of Global cognition) and AD biomarkers (CSF Aβ42, T-tau/P-tau, hippocampal volume and neocortical Aβ-amyloid burden). We reveal that HOMA-IR (p < 0.001) incrementally increases across diagnostic groups, becoming significantly elevated in the AD group compared with cognitively normal (CN) adults. In CN adults, higher HOMA-IR was associated with poorer performance on measures of verbal episodic memory (p = 0.010), executive function (p = 0.046) and global cognition (p = 0.007), as well as with higher CSF T-tau (p = 0.008) and P-tau (p = 0.014) levels. No association was observed with CSF Aβ or imaging modalities. Together our data suggest that IR may contribute to reduced cognitive performance and the accumulation of CSF tau biomarkers in cognitively normal adults.
  • Item
    Thumbnail Image
    18F-Florbetaben PET beta-amyloid binding expressed in Centiloids
    Rowe, CC ; Dore, V ; Jones, G ; Baxendale, D ; Mulligan, RS ; Bullich, S ; Stephens, AW ; De Santi, S ; Masters, CL ; Dinkelborg, L ; Villemagne, VL (SPRINGER, 2017-11)
    PURPOSE: The Centiloid (CL) method enables quantitative values from Aβ-amyloid (Aβ) imaging to be expressed in a universal unit providing pathological, diagnostic and prognostic thresholds in clinical practice and research and allowing integration of multiple tracers and methods. The method was developed for 11C-PiB scans with zero CL set as the average in young normal subjects and 100 CL the average in subjects with mild Alzheimer's disease (AD). The method allows derivation of equations to convert the uptake value of any tracer into the same standard CL units but first requires head-to-head comparison with 11C-PiB results. We derived the equation to express 18F-florbetaben (FBB) binding in CL units. METHODS: Paired PiB and FBB PET scans were obtained in 35 subjects. including ten young normal subjects aged under 45 years (33 ± 8 years). FBB images were acquired from 90 to 110 min after injection. Spatially normalized images were analysed using the standard CL method (SPM8 coregistration of PET data to MRI data and the MNI-152 atlas) and standard CL regions (cortex and whole cerebellum downloaded from http://www.gaain.org ). RESULTS: FBB binding was strongly correlated with PiB binding (R 2 = 0.96, SUVRFBB = 0.61 × SUVRPiB + 0.39). The equation to derive CL values from FBB SUVR was CL units = 153.4 × SUVRFBB - 154.9. The CL value in the young normal subjects was -1.08 ± 6.81 for FBB scans compared to -0.32 ± 3.48 for PiB scans, giving a variance ratio of 1.96 (SDFBB CL/SDPiB CL). CONCLUSIONS: 18F-FBB binding is strongly correlated with PiB binding and FBB results can now be expressed in CL units.
  • Item
    Thumbnail Image
    A randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer's disease: The PBT2-204 IMAGINE study.
    Villemagne, VL ; Rowe, CC ; Barnham, KJ ; Cherny, R ; Woodward, M ; Bozinosvski, S ; Salvado, O ; Bourgeat, P ; Perez, K ; Fowler, C ; Rembach, A ; Maruff, P ; Ritchie, C ; Tanzi, R ; Masters, CL (Wiley, 2017-11)
    INTRODUCTION: We are developing a second generation 8-OH quinoline (2-(dimethylamino) methyl-5, 7-dichloro-8-hydroxyquinoline [PBT2, Prana Biotechnology]) for targeting amyloid β (Aβ) in Alzheimer's disease (AD). In an earlier phase IIa, 3 month trial, PBT2 lowered cerebrospinal fluid Aβ by 13% and improved cognition (executive function) in a dose-related fashion in early AD. We, therefore, sought to learn whether PBT2 could alter the Aβ-PET signal in subjects with prodromal or mild AD, in an exploratory randomized study over a 12-month phase in a double-blind and a 12-month open label extension phase trial design. METHODS: For inclusion, the usual clinical criteria for prodromal or probable AD, Mini-Mental State Examination ≥20, and global Pittsburgh compound B (PiB)-PET standardized uptake volume ratio (SUVR) >1.7 were used. As this was an exploratory study, we included contemporaneous matched control data from the Australian Imaging Biomarker and Lifestyle Study (AIBL). Other measures included fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood Aβ biomarkers, and cognition and function. RESULTS: Forty subjects completed the first 12-month double-blind phase (placebo = 15, PBT2 = 25), and 27 subjects completed the 12-month open label extension phase (placebo = 11, PBT2 = 16). Overall, PTB2 250 mg/day was safe and well tolerated. The mean PiB-PET SUVR at baseline was 2.51 ± 0.59. After adjusting for baseline SUVR, in the double-blind phase, the placebo group showed a nonsignificant decline in PiB-PET SUVR, whereas the PBT2 group declined significantly (P = .048). Subjects who did not enter or complete the extension study had a significantly higher 12-month Aβ-PET SUVR (2.68 ± 0.55) compared with those who completed (2.29 ± 0.48). Both groups differed significantly from the rate of change over 12 months in the AIBL control group. In the open label 12-month extension study, the PiB-SUVR stabilized. There were no significant differences between PBT2 and controls in fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood Aβ biomarkers, or cognition/function over the course of the double-blind phase. DISCUSSION: There was no significant difference between PBT2 and controls at 12 months, likely due to the large individual variances over a relatively small number of subjects. PBT2 was associated with a significant 3% PiB-PET SUVR decline in the double-blind phase and a stabilization of SUVR in the open-label phase. From this exploratory study, we have learned that the entry criterion of SUVR should have been set at ≥ 1.5 and <2.0, where we know from the AIBL study that subjects in this band are accumulating Aβ in a linear fashion and that subjects who withdrew from this type of study have much higher SUVRs, which if not taken into account, could distort the final results. Because of large individual variations in SUVR, future studies of PBT2 will require larger numbers of subjects (n > 90 per arm) over a longer period (18 months or more). Further evaluation of higher doses of PBT2 in earlier stages of AD is warranted. TRIAL REGISTRATION: ACTRN 12611001008910 and ACTRN 12613000777796.