Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Mutations in PRRT2 are not a common cause of infantile epileptic encephalopathies
    Heron, SE ; Ong, YS ; Yendle, SC ; McMahon, JM ; Berkovic, SF ; Scheffer, IE ; Dibbens, LM (WILEY, 2013-05)
    Heterozygous mutations in PRRT2 have recently been identified as the major cause of autosomal dominant benign familial infantile epilepsy (BFIE), infantile convulsions with choreoathetosis syndrome (ICCA), and paroxysmal kinesigenic dyskinesia (PKD). Homozygous mutations in PRRT2 have also been reported in two families with intellectual disability (ID) and seizures. Heterozygous mutations in the genes KCNQ2 and SCN2A cause the two other autosomal dominant seizure disorders of infancy: benign familial neonatal epilepsy and benign familial neonatal-infantile epilepsy. Mutations in KCNQ2 and SCN2A also contribute to severe infantile epileptic encephalopathies (IEEs) in which seizures and intellectual disability co-occur. We therefore hypothesized that PRRT2 mutations may also underlie cases of IEE. We examined PRRT2 for heterozygous, compound heterozygous or homozygous mutations to determine their frequency in causing epileptic encephalopathies (EEs). Two hundred twenty patients with EEs with onset by 2 years were phenotyped. An assay for the common PRRT2 c.649-650insC mutation and high resolution-melt analysis for mutations in the remaining exons of PRRT2 were performed. Neither the common mutation nor any other pathogenic variants in PRRT2 were detected in the 220 patients. Our findings suggest that mutations in PRRT2 are not a common cause of IEEs.
  • Item
    Thumbnail Image
    Epi4K: Gene discovery in 4,000 genomes
    Berkovic, S ; Cossette, P ; Delanty, N ; Dlugos, D ; Eichler, E ; Epstein, M ; Glauser, T ; Goldstein, D ; Heinzen, E ; Johnson, MR ; Kuzniecky, R ; Lowenstein, D ; Marson, T ; Mefford, H ; O'Brien, T ; Ottman, R ; Poduri, A ; Scheffer, I ; Sherr, E ; Shianna, K (WILEY, 2012-08)
    A major challenge in epilepsy research is to unravel the complex genetic mechanisms underlying both common and rare forms of epilepsy, as well as the genetic determinants of response to treatment. To accelerate progress in this area, the National Institute of Neurological Disorders and Stroke (NINDS) recently offered funding for the creation of a "Center without Walls" to focus on the genetics of human epilepsy. This article describes Epi4K, the collaborative study supported through this grant mechanism and having the aim of analyzing the genomes of a minimum 4,000 subjects with highly selected and well-characterized epilepsy.