Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Hyperlactatemia in critical illness and cardiac surgery
    O'Connor, ED ; Fraser, JF (BIOMED CENTRAL LTD, 2010)
  • Item
    No Preview Available
    Critical care services and the H1N1 (2009) influenza epidemic in Australia and New Zealand in 2010: the impact of the second winter epidemic
    Webb, SAR ; Aubron, C ; Bailey, M ; Bellomo, R ; Howe, B ; McArthur, C ; Morrison, S ; Seppelt, I (BMC, 2011)
    INTRODUCTION: During the first winter of exposure, the H1N1 2009 influenza virus placed considerable strain on intensive care unit (ICU) services in Australia and New Zealand (ANZ). We assessed the impact of the H1N1 2009 influenza virus on ICU services during the second (2010) winter, following the implementation of vaccination. METHODS: A prospective, cohort study was conducted in all ANZ ICUs during the southern hemisphere winter of 2010. Data on demographic and clinical characteristics, including vaccination status and outcomes, were collected. The characteristics of patients admitted during the 2010 and 2009 seasons were compared. RESULTS: From 1 June to 15 October 2010, there were 315 patients with confirmed influenza A, of whom 283 patients (90%) had H1N1 2009 (10.6 cases per million inhabitants; 95% confidence interval (CI), 9.4 to 11.9) which was an observed incidence of 33% of that in 2009 (P < 0.001). The maximum daily ICU occupancy was 2.4 beds (95% CI, 1.8 to 3) per million inhabitants in 2010 compared with 7.5 (95% CI, 6.5 to 8.6) in 2009, (P < 0.001). The onset of the epidemic in 2010 was delayed by five weeks compared with 2009. The clinical characteristics were similar in 2010 and 2009 with no difference in the age distribution, proportion of patients treated with mechanical ventilation, duration of ICU admission, or hospital mortality. Unlike 2009 the incidence of critical illness was significantly greater in New Zealand (18.8 cases per million inhabitants compared with 9 in Australia, P < 0.001). Of 170 patients with known vaccination status, 26 (15.3%) had been vaccinated against H1N1 2009. CONCLUSIONS: During the 2010 ANZ winter, the impact of H1N1 2009 on ICU services was still appreciable in Australia and substantial in New Zealand. Vaccination failure occurred.
  • Item
    No Preview Available
    Prospective meta-analysis using individual patient data in intensive care medicine
    Reade, MC ; Delaney, A ; Bailey, MJ ; Harrison, DA ; Yealy, DM ; Jones, PG ; Rowan, KM ; Bellomo, R ; Angus, DC (SPRINGER, 2010-01)
    Meta-analysis is a technique for combining evidence from multiple trials. However, meta-analyses of studies with substantial heterogeneity among patients within trials-common in intensive care-can lead to incorrect conclusions if performed using aggregate data. Use of individual patient data (IPD) can avoid this concern, increase the power of a meta-analysis, and is useful for exploring subgroup effects. Barriers exist to IPD meta-analysis, most of which are overcome if clinical trials are designed to prospectively facilitate the incorporation of their results with other trials. We review the features of prospective IPD meta-analysis and identify those of relevance to intensive care research. We identify three clinical questions, which are the subject of recent or planned randomised controlled trials where IPD MA offers advantages over approaches using aggregate data.
  • Item
    Thumbnail Image
    Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality
    Prowle, JR ; Echeverri, JE ; Ligabo, EV ; Sherry, N ; Taori, GC ; Crozier, TM ; Hart, GK ; Korman, TM ; Mayall, BC ; Johnson, PDR ; Bellomo, R (BMC, 2011)
    INTRODUCTION: To estimate the incidence of intensive care unit (ICU)-acquired bloodstream infection (BSI) and its independent effect on hospital mortality. METHODS: We retrospectively studied acquisition of BSI during admissions of >72 hours to adult ICUs from two university-affiliated hospitals. We obtained demographics, illness severity and co-morbidity data from ICU databases and microbiological diagnoses from departmental electronic records. We assessed survival at hospital discharge or at 90 days if still hospitalized. RESULTS: We identified 6339 ICU admissions, 330 of which were complicated by BSI (5.2%). Median time to first positive culture was 7 days (IQR 5-12). Overall mortality was 23.5%, 41.2% in patients with BSI and 22.5% in those without. Patients who developed BSI had higher illness severity at ICU admission (median APACHE III score: 79 vs. 68, P < 0.001). After controlling for illness severity and baseline demographics by Cox proportional-hazard model, BSI remained independently associated with risk of death (hazard ratio from diagnosis 2.89; 95% confidence interval 2.41-3.46; P < 0.001). However, only 5% of the deaths in this model could be attributed to acquired-BSI, equivalent to an absolute decrease in survival of 1% of the total population. When analyzed by microbiological classification, Candida, Staphylococcus aureus and gram-negative bacilli infections were independently associated with increased risk of death. In a sub-group analysis intravascular catheter associated BSI remained associated with significant risk of death (hazard ratio 2.64; 95% confidence interval 1.44-4.83; P = 0.002). CONCLUSIONS: ICU-acquired BSI is associated with greater in-hospital mortality, but complicates only 5% of ICU admissions and its absolute effect on population mortality is limited. These findings have implications for the design and interpretation of clinical trials.
  • Item
    Thumbnail Image
    Dynamic lactate indices as predictors of outcome in critically ill patients
    Nichol, A ; Bailey, M ; Egi, M ; Pettila, V ; French, C ; Stachowski, E ; Reade, MC ; Cooper, DJ ; Bellomo, R (BMC, 2011)
    INTRODUCTION: Dynamic changes in lactate concentrations in the critically ill may predict patient outcome more accurately than static indices. We aimed to compare the predictive value of dynamic indices of lactatemia in the first 24 hours of intensive care unit (ICU) admission with the value of more commonly used static indices. METHODS: This was a retrospective observational study of a prospectively obtained intensive care database of 5,041 consecutive critically ill patients from four Australian university hospitals. We assessed the relationship between dynamic lactate values collected in the first 24 hours of ICU admission and both ICU and hospital mortality. RESULTS: We obtained 36,673 lactate measurements in 5,041 patients in the first 24 hours of ICU admission. Both the time weighted average lactate (LACTW₂₄) and the change in lactate (LACΔ₂₄) over the first 24 hours were independently predictive of hospital mortality with both relationships appearing to be linear in nature. For every one unit increase in LACTW₂₄ and LACΔ₂₄ the risk of hospital death increased by 37% (OR 1.37, 1.29 to 1.45; P < 0.0001) and by 15% (OR 1.15, 1.10 to 1.20; P < 0.0001) respectively. Such dynamic indices, when combined with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, improved overall outcome prediction (P < 0.0001) achieving almost 90% accuracy. When all lactate measures in the first 24 hours were considered, the combination of LACTW₂₄ and LACΔ₂₄ significantly outperformed (P < 0.0001) static indices of lactate concentration, such as admission lactate, maximum lactate and minimum lactate. CONCLUSIONS: In the first 24 hours following ICU admission, dynamic indices of hyperlactatemia have significant independent predictive value, improve the performance of illness severity score-based outcome predictions and are superior to simple static indices of lactate concentration.
  • Item
    Thumbnail Image
    Age of red blood cells and mortality in the critically ill
    Pettilae, V ; Westbrook, AJ ; Nichol, AD ; Bailey, MJ ; Wood, EM ; Syres, G ; Phillips, LE ; Street, A ; French, C ; Murray, L ; Orford, N ; Santamaria, JD ; Bellomo, R ; Cooper, DJ (BMC, 2011)
    INTRODUCTION: In critically ill patients, it is uncertain whether exposure to older red blood cells (RBCs) may contribute to mortality. We therefore aimed to evaluate the association between the age of RBCs and outcome in a large unselected cohort of critically ill patients in Australia and New Zealand. We hypothesized that exposure to even a single unit of older RBCs may be associated with an increased risk of death. METHODS: We conducted a prospective, multicenter observational study in 47 ICUs during a 5-week period between August 2008 and September 2008. We included 757 critically ill adult patients receiving at least one unit of RBCs. To test our hypothesis we compared hospital mortality according to quartiles of exposure to maximum age of RBCs without and with adjustment for possible confounding factors. RESULTS: Compared with other quartiles (mean maximum red cell age 22.7 days; mortality 121/568 (21.3%)), patients treated with exposure to the lowest quartile of oldest RBCs (mean maximum red cell age 7.7 days; hospital mortality 25/189 (13.2%)) had an unadjusted absolute risk reduction in hospital mortality of 8.1% (95% confidence interval = 2.2 to 14.0%). After adjustment for Acute Physiology and Chronic Health Evaluation III score, other blood component transfusions, number of RBC transfusions, pretransfusion hemoglobin concentration, and cardiac surgery, the odds ratio for hospital mortality for patients exposed to the older three quartiles compared with the lowest quartile was 2.01 (95% confidence interval = 1.07 to 3.77). CONCLUSIONS: In critically ill patients, in Australia and New Zealand, exposure to older RBCs is independently associated with an increased risk of death.
  • Item
    Thumbnail Image
    Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest
    Bellomo, R ; Bailey, M ; Eastwood, GM ; Nichol, A ; Pilcher, D ; Hart, GK ; Reade, MC ; Egi, M ; Cooper, DJ (BIOMED CENTRAL LTD, 2011)
    INTRODUCTION: Hyperoxia has recently been reported as an independent risk factor for mortality in patients resuscitated from cardiac arrest. We examined the independent relationship between hyperoxia and outcomes in such patients. METHODS: We divided patients resuscitated from nontraumatic cardiac arrest from 125 intensive care units (ICUs) into three groups according to worst PaO2 level or alveolar-arterial O2 gradient in the first 24 hours after admission. We defined 'hyperoxia' as PaO2 of 300 mmHg or greater, 'hypoxia/poor O2 transfer' as either PaO2 < 60 mmHg or ratio of PaO2 to fraction of inspired oxygen (FiO2 ) < 300, 'normoxia' as any value between hypoxia and hyperoxia and 'isolated hypoxemia' as PaO2 < 60 mmHg regardless of FiO2. Mortality at hospital discharge was the main outcome measure. RESULTS: Of 12,108 total patients, 1,285 (10.6%) had hyperoxia, 8,904 (73.5%) had hypoxia/poor O2 transfer, 1,919 (15.9%) had normoxia and 1,168 (9.7%) had isolated hypoxemia (PaO2 < 60 mmHg). The hyperoxia group had higher mortality (754 (59%) of 1,285 patients; 95% confidence interval (95% CI), 56% to 61%) than the normoxia group (911 (47%) of 1,919 patients; 95% CI, 45% to 50%) with a proportional difference of 11% (95% CI, 8% to 15%), but not higher than the hypoxia group (5,303 (60%) of 8,904 patients; 95% CI, 59% to 61%). In a multivariable model controlling for some potential confounders, including illness severity, hyperoxia had an odds ratio for hospital death of 1.2 (95% CI, 1.1 to 1.6). However, once we applied Cox proportional hazards modelling of survival, sensitivity analyses using deciles of hypoxemia, time period matching and hyperoxia defined as PaO2 > 400 mmHg, hyperoxia had no independent association with mortality. Importantly, after adjustment for FiO2 and the relevant covariates, PaO2 was no longer predictive of hospital mortality (P = 0.21). CONCLUSIONS: Among patients admitted to the ICU after cardiac arrest, hyperoxia did not have a robust or consistently reproducible association with mortality. We urge caution in implementing policies of deliberate decreases in FiO2 in these patients.
  • Item
    Thumbnail Image
    Septic Acute Kidney Injury: The Glomerular Arterioles
    Bellomo, R ; Wan, L ; Langenberg, C ; Ishikawa, K ; May, CN ; Kellum, JA ; Ronco, C ; Vincent, JL (KARGER, 2011)
    Acute kidney injury (AKI) is a serious condition that affects many intensive care unit (ICU) patients. The most common causes of AKI in the ICU are severe sepsis and septic shock. The mortality of AKI in septic critically ill patients remains high despite our increasing ability to support vital organs. This is partly due to our poor understanding of the pathogenesis of sepsis-induced renal dysfunction. However, new concepts are emerging to explain the pathogenesis of septic AKI, which challenge previously held dogma. Throughout the past half century, septic AKI has essentially been considered secondary to tubular injury, which, in turn, has been considered secondary to renal ischemia. This belief is curious because the hallmark of septic AKI and AKI in general is the loss of glomerular filtration rate (GFR). It would seem logical, therefore, to focus on the glomerulus in trying to understand why such loss of GFR occurs. Recent experimental observations suggest that, at least in the initial phases of septic AKI, profound changes occur which involve glomerular hemodynamics and lead to loss of GFR. These observations imply that changes in the vasoconstrictor tone of both the afferent and efferent arterioles are an important component of the pathogenesis of septic AKI.