Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Effects of selective β1-adrenoceptor blockade on cardiovascular and renal function and circulating cytokines in ovine hyperdynamic sepsis
    Calzavacca, P ; Lankadeva, YR ; Bailey, SR ; Bailey, M ; Bellomo, R ; May, CN (BMC, 2014)
    INTRODUCTION: Activation of the sympathetic nervous system has beneficial cardiovascular effects in sepsis, but there is also evidence that sympatholytics have beneficial actions in sepsis. We therefore determined the effect of selective β1-adrenoceptor blockade on cardiac and renal function and cytokine release in ovine hyperdynamic sepsis. METHODS: Hyperdynamic sepsis was induced by infusion of live E. coli for 24 hours in nine conscious sheep instrumented with flow probes on the pulmonary and left renal artery. Cardiovascular and renal function and levels of plasma cytokines were determined in a control group and during selective β1-adrenoceptor blockade with atenolol (10 mg intravenous bolus then 0.125 mg/kg/h) from 8 to 24 hours of sepsis. RESULTS: Hyperdynamic sepsis was characterized by hypotension with increases in cardiac output (CO), heart rate (HR) and renal blood flow (RBF), and acute kidney injury. Atenolol caused sustained reductions in HR (P < 0.001) and CO (P < 0.001). Despite the lower CO the sepsis-induced fall in mean arterial pressure (MAP) was similar in both groups. The sepsis-induced increase in RBF, decrease in renal function and increase in arterial lactate were unaffected by atenolol. Sepsis increased plasma levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and IL-10. Atenolol caused a further increase in IL-10, but did not affect levels of TNF-α or IL-6. CONCLUSIONS: In sepsis, selective β1-adrenoceptor blockade reduced CO, but not MAP. During sepsis, atenolol did not alter the development of acute kidney injury or the levels of pro-inflammatory cytokines, but enhanced the release of IL-10. Atenolol appears safe in sepsis, has no deleterious cardiovascular or renal effects, and has an anti-inflammatory effect.
  • Item
    Thumbnail Image
    Acid-base changes after fluid bolus: sodium chloride vs. sodium octanoate
    Ke, L ; Calzavacca, P ; Bailey, M ; Li, W-Q ; Bellomo, R ; May, CN (SPRINGEROPEN, 2013)
    OBJECTIVES: This study aims to test the hypothesis that fluid loading with sodium chloride (150 mmol Na and 150 mmol Cl) or sodium octanoate (150 mmol Na, 100 mmol Cl, and 50 mmol octanoate) would lead to different acid-base changes. DESIGN: We performed a double-blind crossover experimental study. SETTING: The study was done at a University Physiology Laboratory. SUBJECTS: Eight Merino ewes were used as subjects. MEASUREMENTS AND MAIN RESULTS: We randomly assigned animals to a rapid intravenous infusion (1 L over 30 min) of either normal saline (NS) or sodium octanoate solution (OS). We collected blood samples at 0.5, 1, 2, 4, and 6 h after the start of the infusion for blood gas analyses and biochemistry. We calculated strong ion difference apparent (SIDa), effective strong ion difference, and strong ion gap (SIG). Animals in the NS group developed metabolic acidification immediately after fluid administration (pH 7.49 to 7.42, base excess 3.0 to -1.6 mEq/L), while the OS group did not (pH 7.47 to 7.51, base excess 1.1 to 1.4 mEq/L; P < 0.001). Additionally, the OS group had higher SIDa (36.2 vs. 33.2 mEq/L) and SIG (7.4 vs. 6.2 mEq/L) at the end of the infusion. CONCLUSIONS: Our findings provide further evidence that acidification induced by intravenous fluid loading is dependent on fluid composition and challenges the paradigm of the so-called dilutional acidosis.
  • Item
    Thumbnail Image
    Contrast-enhanced ultrasound evaluation of renal microcirculation in sheep
    Schneider, AG ; Calzavacca, P ; Schelleman, A ; Huynh, T ; Bailey, M ; May, C ; Bellomo, R (SPRINGEROPEN, 2014)
    BACKGROUND: Contrast-enhanced ultrasonography (CEUS) is a novel imaging modality to estimate microvascular perfusion. We aimed to assess renal cortical microcirculatory changes by CEUS during pharmacologically or mechanically induced modifications of renal blood flow (RBF) in experimental animals. METHODS: We implanted invasive transit-time Doppler flow probes and a vascular occluder around the renal artery in six Merino sheep. After induction of general anaesthesia, renal CEUS studies with destruction-replenishment sequences were performed at baseline and after different interventions aimed at modifying RBF. First, we administered angiotensin II (AngII) to achieve a 25% (AngII 25%) and 50% (AngII 50%) decrease in RBF. Then, we applied mechanical occlusion of the renal artery until RBF decreased by 25% (Occl 25%) and 50% (Occl 50%) of the baseline. Finally, a single dose of 25 mg of captopril was administered. CEUS sequences were analysed offline with dedicated software and perfusion indices (PI) calculated. RESULTS: Pharmacological reduction of RBF with AngII was associated with a 62% (range: 68 decrease to 167 increase) increase (AngII 25%) and a 5% increase in PI (range: 92% decrease to 53% increase) (AngII 50%) in PI. Mechanical occlusion of the renal artery was associated with a 2% (range: 43% decrease to 2% increase) decrease (Occl 25%) and a 67% (range: 63% decrease to a 120% increase) increase (Occl 50%) in PI. The administration of captopril was associated with a 8% (range: 25% decrease to a 101% increase) decrease in PI. Pooled changes in PI failed to reach statistical significance. The study was limited by the difficulty to obtain high quality images. CONCLUSIONS: CEUS-derived parameters were highly heterogeneous in this sheep model. The current protocol and model did not allow the evaluation of the correlation between macro and microcirculation assessment by CEUS.
  • Item
    Thumbnail Image
    Systemic and renal hemodynamic effects of intra-arterial radiocontrast
    Calzavacca, P ; Ishikawa, K ; Bailey, M ; May, CN ; Bellomo, R (SPRINGEROPEN, 2014)
    BACKGROUND: Decreased renal blood flow (RBF) and vasoconstriction are considered major mechanisms of contrast-induced acute kidney injury (CIAKI). To understand the severity and duration of such putative effects, we measured systemic and renal hemodynamics after intra-arterial radiocontrast administration. The subjects were six Merino ewes. The setting was a university-affiliated research institute. This is a randomized cross-over experimental study. METHODS: Transit-time flow probes were implanted on the pulmonary and left renal arteries 2 weeks before experimentation. We simulated percutaneous coronary intervention by administering five intra-arterial boluses of 0.5 mL/kg saline (control) or radiocontrast (iodixanol) to a total of 2.5 mL/kg over 1 h. Cardiac output (CO), heart rate, mean arterial pressure (MAP), RBF, renal vascular conductance (RVC), urine output (UO), creatinine clearance (CrCl), and fractional excretion of sodium (FENa) were measured. RESULTS: In the first 8 h after intra-arterial administration of radiocontrast, CO, total peripheral conductance (TPC), and heart rate (HR) increased compared with those after normal saline administration. Thereafter, CO and TPC were similar between the two groups, but HR remained higher with radiocontrast (p < 0.001). After a short (30 min) period of renal vasoconstriction with preserved RBF secondary to an associated increase in MAP, RBF and RVC showed an earlier and greater increase (vasodilatation) with radiocontrast (p < 0.001) and remained higher during the first 2 days. Radiocontrast initially increased urine output (p < 0.001) and FENa (p = 0.003). However, the overall daily urine output decreased in the radiocontrast-treated animals at 2 days (p < 0.001) and 3 days (p = 0.006). Creatinine clearance was not affected. CONCLUSIONS: In healthy animals, intra-arterial radiocontrast increased RBF, induced renal vasodilatation, and caused a delayed period of oliguria. Our findings suggest that sustained reduction in RBF and renal vasoconstriction may not occur in normal large mammals after intra-arterial radiocontrast administration.
  • Item
    Thumbnail Image
    Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience
    Oxley, TJ ; Yoo, PE ; Rind, GS ; Ronayne, SM ; Lee, CMS ; Bird, C ; Hampshire, V ; Sharma, RP ; Morokoff, A ; Williams, DL ; MacIsaac, C ; Howard, ME ; Irving, L ; Vrljic, I ; Williams, C ; John, SE ; Weissenborn, F ; Dazenko, M ; Balabanski, AH ; Friedenberg, D ; Burkitt, AN ; Wong, YT ; Drummond, KJ ; Desmond, P ; Weber, D ; Denison, T ; Hochberg, LR ; Mathers, S ; O'Brien, TJ ; May, CN ; Mocco, J ; Grayden, DB ; Campbell, BC ; Mitchell, P ; Opie, NL (BMJ PUBLISHING GROUP, 2021-02)
    BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.
  • Item
    Thumbnail Image
    Septic Acute Kidney Injury: The Glomerular Arterioles
    Bellomo, R ; Wan, L ; Langenberg, C ; Ishikawa, K ; May, CN ; Kellum, JA ; Ronco, C ; Vincent, JL (KARGER, 2011)
    Acute kidney injury (AKI) is a serious condition that affects many intensive care unit (ICU) patients. The most common causes of AKI in the ICU are severe sepsis and septic shock. The mortality of AKI in septic critically ill patients remains high despite our increasing ability to support vital organs. This is partly due to our poor understanding of the pathogenesis of sepsis-induced renal dysfunction. However, new concepts are emerging to explain the pathogenesis of septic AKI, which challenge previously held dogma. Throughout the past half century, septic AKI has essentially been considered secondary to tubular injury, which, in turn, has been considered secondary to renal ischemia. This belief is curious because the hallmark of septic AKI and AKI in general is the loss of glomerular filtration rate (GFR). It would seem logical, therefore, to focus on the glomerulus in trying to understand why such loss of GFR occurs. Recent experimental observations suggest that, at least in the initial phases of septic AKI, profound changes occur which involve glomerular hemodynamics and lead to loss of GFR. These observations imply that changes in the vasoconstrictor tone of both the afferent and efferent arterioles are an important component of the pathogenesis of septic AKI.