Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 36
  • Item
    Thumbnail Image
    A mixed-methods feasibility study of a new digital health support package for people after stroke: the Recovery-focused Community support to Avoid readmissions and improve Participation after Stroke (ReCAPS) intervention
    Cameron, J ; Lannin, NA ; Harris, D ; Andrew, NE ; Kilkenny, MF ; Purvis, T ; Thrift, AG ; Thayabaranathan, T ; Ellery, F ; Sookram, G ; Hackett, M ; Kneebone, I ; Drummond, A ; Cadilhac, DA (BMC, 2022-11-19)
    BACKGROUND: Evidence for digital health programmes to support people living with stroke is growing. We assessed the feasibility of a protocol and procedures for the Recovery-focused Community support to Avoid readmissions and improve Participation after Stroke (ReCAPS) trial. METHODS: We conducted a mixed-method feasibility study. Participants with acute stroke were recruited from three hospitals (Melbourne, Australia). Eligibility: Adults with stroke discharged from hospital to home within 10 days, modified Rankin Score 0-4 and prior use of Short Message System (SMS)/email. While in hospital, recruited participants contributed to structured person-centred goal setting and completed baseline surveys including self-management skills and health-related quality of life. Participants were randomised 7-14 days after discharge via REDCap® (1:1 allocation). Following randomisation, the intervention group received a 12-week programme of personalised electronic support messages (average 66 messages sent by SMS or email) aligned with their goals. The control group received six electronic administrative messages. Feasibility outcomes included the following: number of patients screened and recruited, study retainment, completion of outcome measures and acceptability of the ReCAPS intervention and trial procedures (e.g. participant satisfaction survey, clinician interviews). Protocol fidelity outcomes included number of goals developed (and quality), electronic messages delivered, stop messages received and engagement with messages. We undertook inductive thematic analysis of interview/open-text survey data and descriptive analysis of closed survey questions. RESULTS: Between November 2018 and October 2019, 312 patients were screened; 37/105 (35%) eligible patients provided consent (mean age 61 years; 32% female); 33 were randomised (17 to intervention). Overall, 29 (88%) participants completed the12-week outcome assessments with 12 (41%) completed assessments in the allocated timeframe and 16 also completing the satisfaction survey (intervention=10). Overall, trial participants felt that the study was worthwhile and most would recommend it to others. Six clinicians participated in one of three focus group interviews; while they reported that the trial and the process of goal setting were acceptable, they raised concerns regarding the additional time required to personalise goals. CONCLUSION: The study protocol and procedures were feasible with acceptable retention of participants. Consent and goal personalisation procedures should be centralised for the phase III trial to reduce the burden on hospital clinicians. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12618001468213 (date 31/08/2018); Universal Trial Number: U1111-1206-7237.
  • Item
    No Preview Available
    Prevalence and Significance of Impaired Microvascular Tissue Reperfusion Despite Macrovascular Angiographic Reperfusion (No-Reflow)
    Ng, FC ; Churilov, L ; Yassi, N ; Kleinig, TJ ; Thijs, V ; Wu, T ; Shah, D ; Dewey, H ; Sharma, G ; Desmond, P ; Yan, B ; Parsons, M ; Donnan, G ; Davis, S ; Mitchell, P ; Campbell, B (LIPPINCOTT WILLIAMS & WILKINS, 2022-02-22)
    BACKGROUND AND OBJECTIVES: The relevance of impaired microvascular tissue-level reperfusion despite complete upstream macrovascular angiographic reperfusion (no-reflow) in human stroke remains controversial. We investigated the prevalence and clinical-radiologic features of this phenomenon and its associations with outcomes in 3 international randomized controlled thrombectomy trials with prespecified follow-up perfusion imaging. METHODS: In a pooled analysis of the Extending the Time for Thrombolysis in Emergency Neurological Deficits-Intra-Arterial (EXTEND-IA; ClinicalTrials.gov NCT01492725), Tenecteplase Versus Alteplase Before Endovascular Therapy for Ischemic Stroke (EXTEND-IA TNK; NCT02388061), and Determining the Optimal Dose of Tenecteplase Before Endovascular Therapy for Ischaemic Stroke (EXTEND-IA TNK Part 2; NCT03340493) trials, patients undergoing thrombectomy with final angiographic expanded Treatment in Cerebral Infarction score of 2c to 3 score for anterior circulation large vessel occlusion and 24-hour follow-up CT or MRI perfusion imaging were included. No-reflow was defined as regions of visually demonstrable persistent hypoperfusion on relative cerebral blood volume or flow maps within the infarct and verified quantitatively by >15% asymmetry compared to a mirror homolog in the absence of carotid stenosis or reocclusion. RESULTS: Regions of no-reflow were identified in 33 of 130 patients (25.3%), encompassed a median of 60.2% (interquartile range 47.8%-70.7%) of the infarct volume, and involved both subcortical (n = 26 of 33, 78.8%) and cortical (n = 10 of 33, 30.3%) regions. Patients with no-reflow had a median 25.2% (interquartile range 16.4%-32.2%, p < 0.00001) relative cerebral blood volume interside reduction and 19.1% (interquartile range 3.9%-28.3%, p = 0.00011) relative cerebral blood flow reduction but similar mean transit time (median -3.3%, interquartile range -11.9% to 24.4%, p = 0.24) within the infarcted region. Baseline characteristics were similar between patients with and those without no-reflow. The presence of no-reflow was associated with hemorrhagic transformation (adjusted odds ratio [aOR] 1.79, 95% confidence interval [CI] 2.32-15.57, p = 0.0002), greater infarct growth (β = 11.00, 95% CI 5.22-16.78, p = 0.00027), reduced NIH Stroke Scale score improvement at 24 hours (β = -4.06, 95% CI 6.78-1.34, p = 0.004) and being dependent or dead at 90 days as assessed by the modified Rankin Scale (aOR 3.72, 95% CI 1.35-10.20, p = 0.011) in multivariable analysis. DISCUSSION: Cerebral no-reflow in humans is common, can be detected by its characteristic perfusion imaging profile using readily available sequences in the clinical setting, and is associated with posttreatment complications and being dependent or dead. Further studies evaluating the role of no-reflow in secondary injury after angiographic reperfusion are warranted. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that cerebral no-reflow on CT/MRI perfusion imaging at 24 hours is associated with posttreatment complications and poor 3-month functional outcome.
  • Item
    No Preview Available
    Endovascular Thrombectomy Versus Medical Management in Isolated M2 Occlusions: Pooled Patient-Level Analysis from the EXTEND-IA Trials, INSPIRE, and SELECT Studies
    Sarraj, A ; Parsons, M ; Bivard, A ; Hassan, AE ; Abraham, MG ; Wu, T ; Kleinig, T ; Lin, L ; Chen, C ; Levi, C ; Dong, Q ; Cheng, X ; Butcher, KS ; Choi, P ; Yassi, N ; Shah, D ; Sharma, G ; Pujara, D ; Shaker, F ; Blackburn, S ; Dewey, H ; Thijs, V ; Sitton, CW ; Donnan, GA ; Mitchell, PJ ; Yan, B ; Grotta, JG ; Albers, GW ; Davis, SM ; Campbell, B (WILEY, 2022-05)
    OBJECTIVE: The objective of this study was to evaluate functional and safety outcomes of endovascular thrombectomy (EVT) versus medical management (MM) in patients with M2 occlusion and examine their association with perfusion imaging mismatch and stroke severity. METHODS: In a pooled, patient-level analysis of 3 randomized controlled trials (EXTEND-IA, EXTEND-and IA-TNK parts 1 and 2) and 2 prospective nonrandomized studies (INSPIRE and SELECT), we evaluated EVT association with 90-day functional independence (modified Rankin Scale [mRS] = 0-2) in isolated M2 occlusions as compared to medical management overall and in subgroups by mismatch profile status and stroke severity. RESULTS: We included 517 patients (EVT = 195 and MM = 322), baseline median (interquartile range [IQR]) National Institutes of Health Stroke Scale (NIHSS) was 13 (8-19) in EVT versus 10 (6-15) in MM, p < 0.001. Pretreatment ischemic core did not differ (EVT = 10 [0-24] ml vs MM = 9 [3-21] ml, p = 0.59). Compared to MM, EVT was more frequently associated with functional independence (68.3 vs 61.6%, adjusted odds ratio [aOR] = 2.42, 95% confidence interval [CI] = 1.25-4.67, p = 0.008, inverse probability of treatment weights [IPTW]-OR = 1.75, 95% CI = 1.00-3.75, p = 0.05) with a shift toward better mRS outcomes (adjusted cOR = 2.02, 95% CI:1.23-3.29, p = 0.005), and lower mortality (5 vs 10%, aOR = 0.32, 95% CI = 0.12-0.87, p = 0.025). EVT was associated with higher functional independence in patients with a perfusion mismatch profile (EVT = 70.7% vs MM = 61.3%, aOR = 2.29, 95% CI = 1.09-4.79, p = 0.029, IPTW-OR = 2.02, 1.08-3.78, p = 0.029), whereas no difference was found in those without mismatch (EVT = 43.8% vs MM = 62.7%, p = 0.17, IPTW-OR: 0.71, 95% CI = 0.18-2.78, p = 0.62). Functional independence was more frequent with EVT in patients with moderate or severe strokes, as defined by baseline NIHSS above any thresholds from 6 to 10, whereas there was no difference between groups with milder strokes below these thresholds. INTERPRETATION: In patients with M2 occlusion, EVT was associated with improved clinical outcomes when compared to MM. This association was primarily observed in patients with a mismatch profile and those with higher stroke severity. ANN NEUROL 2022;91:629-639.
  • Item
    Thumbnail Image
    Plasma Angiotensin Converting Enzyme 2 (ACE2) Activity in Healthy Controls and Patients with Cardiovascular Risk Factors and/or Disease
    Lim, HY ; Patel, SK ; Huang, P ; Tacey, M ; Choy, KW ; Wang, J ; Donnan, G ; Nandurkar, HH ; Ho, P ; Burrell, LM (MDPI, 2022-09)
    Angiotensin converting enzyme 2 (ACE2) is an endogenous negative regulator of the renin-angiotensin system, a key factor in the development of cardiovascular disease (CVD). ACE2 is also used by SARS-CoV-2 for host cell entry. Given that COVID-19 is associated with hypercoagulability, it is timely to explore the potential relationship between plasma ACE2 activity and the coagulation profile. In this cross-sectional study, ACE2 activity and global coagulation assays (GCA) including thromboelastography, thrombin, and fibrin generation were measured in adult healthy controls (n = 123; mean age 41 ± 17 years; 35% male) and in patients with cardiovascular risk factors and/or disease (n = 258; mean age 65 ± 14 years; 55% male). ACE2 activity was significantly lower in controls compared to patients with cardiovascular risk factors and/or disease (median 0.10 (0.02, 3.33) vs. 5.99 (1.95, 10.37) pmol/mL/min, p < 0.001). Of the healthy controls, 48% had undetectable ACE2 activity. Controls with detectable ACE2 had lower maximum amplitude (p < 0.001). In patients with cardiovascular risk factors and/or disease, those in the 3rd tertile were older and male (p = 0.002), with a higher Framingham grade and increased number of cardiovascular risk factors (p < 0.001). In conclusion, plasma ACE2 activity is undetectable to very low in young healthy controls with minimal clinically relevant associations to GCA. Patients with cardiovascular risk factors and/or disease have increased plasma ACE2 activity, suggesting that it may be an important biomarker of endothelial dysfunction and atherosclerosis.
  • Item
    Thumbnail Image
    The Need for Individualized Risk Assessment in Cardiovascular Disease
    Lim, HY ; Burrell, LM ; Brook, R ; Nandurkar, HH ; Donnan, G ; Ho, P (MDPI, 2022-07)
    Cardiovascular disease remains the leading cause of death in the era of modern medicine despite major advancements in this field. Current available clinical surrogate markers and blood tests do not adequately predict individual risk of cardiovascular disease. A more precise and sophisticated tool that can reliably predict the thrombosis and bleeding risks at an individual level is required in order for clinicians to confidently recommend early interventions with a favorable risk-benefit profile. Critical to the development of this tool is the assessment and understanding of Virchow's triad and its complex interactions between hypercoagulability, endothelial dysfunction and vessel flow, a fundamental concept to the development of thrombosis. This review explores the pathophysiology of cardiovascular disease stemming from the triad of factors and how individualized risk assessment can be improved through the multimodal use of tools such as global coagulation assays, endothelial biomarkers and vessel flow assessment.
  • Item
    No Preview Available
    Healthy Life-Year Costs of Treatment Speed From Arrival to Endovascular Thrombectomy in Patients With Ischemic Stroke A Meta-analysis of Individual Patient Data From 7 Randomized Clinical Trials
    Almekhlafi, MA ; Goyal, M ; Dippel, DWJ ; Majoie, CBLM ; Campbell, BCV ; Muir, KW ; Demchuk, AM ; Bracard, S ; Guillemin, F ; Jovin, TG ; Mitchell, P ; White, P ; Hill, MD ; Brown, S ; Saver, JL (AMER MEDICAL ASSOC, 2021-06)
    IMPORTANCE: The benefits of endovascular thrombectomy (EVT) are time dependent. Prior studies may have underestimated the time-benefit association because time of onset is imprecisely known. OBJECTIVE: To assess the lifetime outcomes associated with speed of endovascular thrombectomy in patients with acute ischemic stroke due to large-vessel occlusion (LVO). DATA SOURCES: PubMed was searched for randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time, and for which a peer-reviewed, complete primary results article was published by August 1, 2020. STUDY SELECTION: All randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time were included. DATA EXTRACTION/SYNTHESIS: Patient-level data regarding presenting clinical and imaging features and functional outcomes were pooled from the 7 retrieved randomized clinical trials of stent retriever thrombectomy devices (entirely or predominantly) vs medical therapy. All 7 identified trials published in a peer-reviewed journal (by August 1, 2020) contributed data. Detailed time metrics were collected including last known well-to-door (LKWTD) time; last known well/onset-to-puncture (LKWTP) time; last known well-to-reperfusion (LKWR) time; door-to-puncture (DTP) time; and door-to-reperfusion (DTR) time. MAIN OUTCOMES AND MEASURES: Change in healthy life-years measured as disability-adjusted life-years (DALYs). DALYs were calculated as the sum of years of life lost (YLL) owing to premature mortality and years of healthy life lost because of disability (YLD). Disability weights were assigned using the utility-weighted modified Rankin Scale. Age-specific life expectancies without stroke were calculated from 2017 US National Vital Statistics. RESULTS: Among the 781 EVT-treated patients, 406 (52.0%) were early-treated (LKWTP ≤4 hours) and 375 (48.0%) were late-treated (LKWTP >4-12 hours). In early-treated patients, LKWTD was 188 minutes (interquartile range, 151.3-214.8 minutes) and DTP 105 minutes (interquartile range, 76-135 minutes). Among the 298 of 380 (78.4%) patients with substantial reperfusion, median DTR time was 145.0 minutes (interquartile range, 111.5-185.5 minutes). Care process delays were associated with worse clinical outcomes in LKW-to-intervention intervals in early-treated patients and in door-to-intervention intervals in early-treated and late-treated patients, and not associated with LKWTD intervals, eg, in early-treated patients, for each 10-minute delay, healthy life-years lost were DTP 1.8 months vs LKWTD 0.0 months; P < .001. Considering granular time increments, the amount of healthy life-time lost associated with each 1 second of delay was DTP 2.2 hours and DTR 2.4 hours. CONCLUSIONS AND RELEVANCE: In this study, care delays were associated with loss of healthy life-years in patients with acute ischemic stroke treated with EVT, particularly in the postarrival time period. The finding that every 1 second of delay was associated with loss of 2.2 hours of healthy life may encourage continuous quality improvement in door-to-treatment times.
  • Item
    Thumbnail Image
    Fibrin clot characteristics and anticoagulant response in a SARS-CoV-2-infected endothelial model.
    McCafferty, C ; Lee, L ; Cai, T ; Praporski, S ; Stolper, J ; Karlaftis, V ; Attard, C ; Myint, D ; Carey, LM ; Howells, DW ; Donnan, GA ; Davis, S ; Ma, H ; Crewther, S ; Nguyen, VA ; Van Den Helm, S ; Letunica, N ; Swaney, E ; Elliott, D ; Subbarao, K ; Ignjatovic, V ; Monagle, P (Wiley, 2022-05)
    Coronavirus disease 2019 (COVID-19) patients have increased thrombosis risk. With increasing age, there is an increase in COVID-19 severity. Additionally, adults with a history of vasculopathy have the highest thrombotic risk in COVID-19. The mechanisms of these clinical differences in risk remain unclear. Human umbilical vein endothelial cells (HUVECs) were infected with SARS-CoV-2, influenza A/Singapore/6/86 (H1N1) or mock-infected prior to incubation with plasma from healthy children, healthy adults or vasculopathic adults. Fibrin on surface of cells was observed using scanning electron microscopy, and fibrin characteristics were quantified. This experiment was repeated in the presence of bivalirudin, defibrotide, low-molecular-weight-heparin (LMWH) and unfractionated heparin (UFH). Fibrin formed on SARS-CoV-2 infected HUVECs was densely packed and contained more fibrin compared to mock-infected cells. Fibrin generated from child plasma was the thicker than fibrin generated in vasculopathic adult plasma (p = 0.0165). Clot formation was inhibited by LMWH (0.5 U/ml) and UFH (0.1-0.7 U/ml). We show that in the context of the SARS-CoV-2 infection on an endothelial culture, plasma from vasculopathic adults produces fibrin clots with thinner fibrin, indicating that the plasma coagulation system may play a role in determining the thrombotic outcome of SARS-CoV-2 infection. Heparinoid anticoagulants were most effective at preventing clot formation.
  • Item
    Thumbnail Image
    Tenecteplase versus Alteplase for Stroke Thrombolysis Evaluation Trial in the Ambulance (Mobile Stroke Unit-TASTE-A): protocol for a prospective randomised, open-label, blinded endpoint, phase II superiority trial of tenecteplase versus alteplase for ischaemic stroke patients presenting within 4.5 hours of symptom onset to the mobile stroke unit
    Bivard, A ; Zhao, H ; Coote, S ; Campbell, B ; Churilov, L ; Yassi, N ; Yan, B ; Valente, M ; Sharobeam, A ; Balabanski, A ; Dos Santos, A ; Ng, F ; Langenberg, F ; Stephenson, M ; Smith, K ; Bernard, S ; Thijs, V ; Cloud, G ; Choi, P ; Ma, H ; Wijeratne, T ; Chen, C ; Olenko, L ; Davis, SM ; Donnan, GA ; Parsons, M (BMJ PUBLISHING GROUP, 2022-04)
    INTRODUCTION: Mobile stroke units (MSUs) equipped with a CT scanner are increasingly being used to assess and treat stroke patients' prehospital with thrombolysis and transfer them to the most appropriate hospital for ongoing stroke care and thrombectomy when indicated. The effect of MSUs in both reducing the time to reperfusion treatment and improving patient outcomes is now established. There is now an opportunity to improve the efficacy of treatment provided by the MSU. Tenecteplase is a potent plasminogen activator, which may have benefits over the standard of care stroke lytic alteplase. Specifically, in the MSU environment tenecteplase presents practical benefits since it is given as a single bolus and does not require an infusion over an hour like alteplase. OBJECTIVE: In this trial, we seek to investigate if tenecteplase, given to patients with acute ischaemic stroke as diagnosed on the MSU, improves the rate of early reperfusion. METHODS AND ANALYSIS: TASTE-A is a prospective, randomised, open-label, blinded endpoint (PROBE) phase II trial of patients who had an ischaemic stroke assessed in an MSU within 4.5 hours of symptom onset. The primary endpoint is early reperfusion measured by the post-lysis volume of the CT perfusion lesion performed immediately after hospital arrival. ETHICS AND DISSEMINATION: The study was approved by the Royal Melbourne Hospital Human Ethics committee. The findings will be published in peer-reviewed journals, presented at academic conferences and disseminated among consumer and healthcare professional audiences. TRIAL REGISTRATION NUMBER: NCT04071613.
  • Item
    Thumbnail Image
    Maximising data value and avoiding data waste: a validation study in stroke research
    Kilkenny, MF ; Kim, J ; Andrew, NE ; Sundararajan, V ; Thrift, AG ; Katzenellenbogen, JM ; Flack, F ; Gattellari, M ; Boyd, JH ; Anderson, P ; Lannin, N ; Sipthorp, M ; Chen, Y ; Johnston, T ; Anderson, CS ; Middleton, S ; Donnan, GA ; Cadilhac, DA (AUSTRALASIAN MED PUBL CO LTD, 2019-01-14)
    OBJECTIVES: To determine the feasibility of linking data from the Australian Stroke Clinical Registry (AuSCR), the National Death Index (NDI), and state-managed databases for hospital admissions and emergency presentations; to evaluate data completeness and concordance between datasets for common variables. DESIGN, SETTING, PARTICIPANTS: Cohort design; probabilistic/deterministic data linkage of merged records for patients treated in hospital for stroke or transient ischaemic attack from New South Wales, Queensland, Victoria, and Western Australia. MAIN OUTCOME MEASURES: Descriptive statistics for data matching success; concordance of demographic variables common to linked databases; sensitivity and specificity of AuSCR in-hospital death data for predicting NDI registrations. RESULTS: Data for 16 214 patients registered in the AuSCR during 2009-2013 were linked with one or more state datasets: 15 482 matches (95%) with hospital admissions data, and 12 902 matches (80%) with emergency department presentations data were made. Concordance of AuSCR and hospital admissions data exceeded 99% for sex, age, in-hospital death (each κ = 0.99), and Indigenous status (κ = 0.83). Of 1498 registrants identified in the AuSCR as dying in hospital, 1440 (96%) were also recorded by the NDI as dying in hospital. In-hospital death in AuSCR data had 98.7% sensitivity and 99.6% specificity for predicting in-hospital death in the NDI. CONCLUSION: We report the first linkage of data from an Australian national clinical quality disease registry with routinely collected data from several national and state government health datasets. Data linkage enriches the clinical registry dataset and provides additional information beyond that for the acute care setting and quality of life at follow-up, allowing clinical outcomes for people with stroke (mortality and hospital contacts) to be more comprehensively assessed.
  • Item
    No Preview Available
    Fatal and Nonfatal Events Within 14 days After Early, Intensive Mobilization Poststroke
    Bernhardt, J ; Borschmann, K ; Collier, JM ; Thrift, AG ; Langhorne, P ; Middleton, S ; Lindley, RI ; Dewey, HM ; Bath, P ; Said, CM ; Churilov, L ; Ellery, F ; Bladin, C ; Reid, CM ; Frayne, JH ; Srikanth, V ; Read, SJ ; Donnan, GA (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-23)
    OBJECTIVE: This tertiary analysis from A Very Early Rehabilitation Trial (AVERT) examined fatal and nonfatal serious adverse events (SAEs) at 14 days. METHOD: AVERT was a prospective, parallel group, assessor blinded, randomized international clinical trial comparing mobility training commenced <24 hours poststroke, termed very early mobilization (VEM), to usual care (UC). Primary outcome was assessed at 3 months. Patients with ischemic or hemorrhagic stroke within 24 hours of onset were included. Treatment with thrombolytics was allowed. Patients with severe premorbid disability or comorbidities were excluded. Interventions continued for 14 days or hospital discharge if less. The primary early safety outcome was fatal SAEs within 14 days. Secondary outcomes were nonfatal SAEs classified as neurologic, immobility-related, and other. Mortality influences were assessed using binary logistic regression adjusted for baseline stroke severity (NIH Stroke Scale [NIHSS] score) and age. RESULTS: A total of 2,104 participants were randomized to VEM (n = 1,054) or UC (n = 1,050) with a median age of 72 years (interquartile range [IQR] 63-80) and NIHSS 7 (IQR 4-12). By 14 days, 48 had died in VEM, 32 in UC, age and stroke severity adjusted odds ratio of 1.76 (95% confidence interval 1.06-2.92, p = 0.029). Stroke progression was more common in VEM. Exploratory subgroup analyses showed higher odds of death in intracerebral hemorrhage and >80 years subgroups, but there was no significant treatment by subgroup interaction. No difference in nonfatal SAEs was found. CONCLUSION: While the overall case fatality at 14 days poststroke was only 3.8%, mortality adjusted for age and stroke severity was increased with high dose and intensive training compared to usual care. Stroke progression was more common in VEM. REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12606000185561. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that very early mobilization increases mortality at 14 days poststroke.