Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Blood Plasma Metabolites in Diabetes-Associated Chronic Kidney Disease: A Focus on Lipid Profiles and Cardiovascular Risk
    Lecamwasam, A ; Mansell, T ; Ekinci, EI ; Saffery, R ; Dwyer, KM (FRONTIERS MEDIA SA, 2022-02-28)
    BACKGROUND: We investigated a cross-sectional metabolomic analysis of plasma and urine of patients with early and late stage diabetes associated chronic kidney disease (CKD), inclusive of stages 1-5 CKD, to identify potential metabolomic profiles between the two groups. METHODS: This cross-sectional study recruited 119 adults. Metabolomic biomarkers were quantified in 119 non-fasted plasma and 57 urine samples using a high-throughput proton Nuclear Magnetic Resonance platform. Analyses were conducted using R with the ggforestplot package. Linear regression models were minimally adjusted for age, sex, and body mass index and p-values were adjusted for multiple comparisons using the Benjamini-Hockberg method with a false discovery rate of 0.05. RESULTS: Apolipoprotein A1 concentration (ApoA1) was reduced (adj. p = 0.04) and apolipoprotein B/apolipoprotein A1 ratio (ApoB/ApoA1) was increased (adj. p = 0.04) in late CKD compared with early CKD. Low-density lipoprotein triglyceride (LDL-TG) had an increased concentration (adj. p = 0.01), while concentrations of high-density lipoprotein cholesterol (HDL-C) were reduced (adj. p = 0.04) in late CKD compared to early stages of disease. CONCLUSION: Our results highlight the presence of abnormal lipid metabolism namely significant reduction in the protective ApoA1 and significant increase in atherogenic ApoB/ApoA1 ratio. The study also demonstrates significantly elevated levels of triglyceride-rich lipoproteins such as LDL-TG. We illustrate the significant reduction in protective HDL-C in individuals with diabetic CKD. It explores a detailed plasma lipid profile that significantly differentiates between the late and early CKD groups as well as each CKD stage. The study of complex metabolite profiles may provide additional data required to enable more specific cardiovascular risk stratification.
  • Item
    Thumbnail Image
    SAT-183 DNA METHYLATION PROFILING IDENTIFIES EPIGENTIC DIFFERENCES BETWEEN EARLY VERSUS LATE STAGES OF DIABETIC CHRONIC KIDNEY DISEASE
    Lecamwasam, A ; Novakovic, B ; Meyer, B ; Ekinci, E ; Dwyer, K ; Saffery, R (Elsevier BV, 2020-03)
  • Item
    Thumbnail Image
    Identification of Potential Biomarkers of Chronic Kidney Disease in Individuals with Diabetes: Protocol for a Cross-sectional Observational Study
    Lecamwasam, AR ; Mohebbi, M ; Ekinci, E ; Dwyer, KM ; Saffery, R (JMIR PUBLICATIONS, INC, 2020-07)
    BACKGROUND: The importance of identifying people with diabetes and progressive kidney dysfunction relates to the excess morbidity and mortality of this group. Rates of cardiovascular disease are much higher in people with both diabetes and kidney dysfunction than in those with only one of these conditions. By the time these people are identified in current clinical practice, proteinuria and renal dysfunction are already established, limiting the effectiveness of therapeutic interventions. The identification of an epigenetic or blood metabolite signature or gut microbiome profile may identify those with diabetes at risk of progressive chronic kidney disease, in turn providing targeted intervention to improve patient outcomes. OBJECTIVE: This study aims to identify potential biomarkers in people with diabetes and chronic kidney disease (CKD) associated with progressive renal injury and to distinguish between stages of chronic kidney disease. Three sources of biomarkers will be explored, including DNA methylation profiles in blood lymphocytes, the metabolomic profile of blood-derived plasma and urine, and the gut microbiome. METHODS: The cross-sectional study recruited 121 people with diabetes and varying stages (stages 1-5) of chronic kidney disease. Single-point data collection included blood, urine, and fecal samples in addition to clinical data such as anthropometric measurements and biochemical parameters. Additional information obtained from medical records included patient demographics, medical comorbidities, and medications. RESULTS: Data collection commenced in January 2018 and was completed in June 2018. At the time of submission, 121 patients had been recruited, and 119 samples remained after quality control. There were 83 participants in the early diabetes-associated CKD group with a mean estimated glomerular filtration rate (eGFR) of 61.2 mL/min/1.73 m2 (early CKD group consisting of stage 1, 2, and 3a CKD), and 36 participants in the late diabetic CKD group with a mean eGFR of 23.9 mL/min/1.73 m2 (late CKD group, consisting of stage 3b, 4, and 5), P<.001. We have successfully obtained DNA for methylation and microbiome analyses using the biospecimens collected via this protocol and are currently analyzing these results together with the metabolome of this cohort of individuals with diabetic CKD. CONCLUSIONS: Recent advances have improved our understanding of the epigenome, metabolomics, and the influence of the gut microbiome on the incidence of diseases such as cancers, particularly those related to environmental exposures. However, there is a paucity of literature surrounding these influencers in renal disease. This study will provide insight into the fundamental understanding of the pathophysiology of CKD in individuals with diabetes, especially in novel areas such as epigenetics, metabolomics, and the kidney-gut axis. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/16277.
  • Item
    Thumbnail Image
    Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease
    Lecamwasam, A ; Nelson, TM ; Rivera, L ; Ekinci, EI ; Saffery, R ; Dwyer, KM (MDPI, 2021-01)
    (1) Background: Individuals with diabetes and chronic kidney disease display gut dysbiosis when compared to healthy controls. However, it is unknown whether there is a change in dysbiosis across the stages of diabetic chronic kidney disease. We investigated a cross-sectional study of patients with early and late diabetes associated chronic kidney disease to identify possible microbial differences between these two groups and across each of the stages of diabetic chronic kidney disease. (2) Methods: This cross-sectional study recruited 95 adults. DNA extracted from collected stool samples were used for 16S rRNA sequencing to identify the bacterial community in the gut. (3) Results: The phylum Firmicutes was the most abundant and its mean relative abundance was similar in the early and late chronic kidney disease group, 45.99 ± 0.58% and 49.39 ± 0.55%, respectively. The mean relative abundance for family Bacteroidaceae, was also similar in the early and late group, 29.15 ± 2.02% and 29.16 ± 1.70%, respectively. The lower abundance of Prevotellaceae remained similar across both the early 3.87 ± 1.66% and late 3.36 ± 0.98% diabetic chronic kidney disease groups. (4) Conclusions: The data arising from our cohort of individuals with diabetes associated chronic kidney disease show a predominance of phyla Firmicutes and Bacteroidetes. The families Ruminococcaceae and Bacteroidaceae represent the highest abundance, while the beneficial Prevotellaceae family were reduced in abundance. The most interesting observation is that the relative abundance of these gut microbes does not change across the early and late stages of diabetic chronic kidney disease, suggesting that this is an early event in the development of diabetes associated chronic kidney disease. We hypothesise that the dysbiotic microbiome acquired during the early stages of diabetic chronic kidney disease remains relatively stable and is only one of many risk factors that influence progressive kidney dysfunction.
  • Item
    Thumbnail Image
    Potential for Novel Biomarkers in Diabetes-Associated Chronic Kidney Disease: Epigenome, Metabolome, and Gut Microbiome
    Lecamwasam, A ; Ekinci, EI ; Saffery, R ; Dwyer, KM (MDPI, 2020-09)
    Diabetes-associated chronic kidney disease is a pandemic issue. Despite the global increase in the number of individuals with this chronic condition together with increasing morbidity and mortality, there are currently only limited therapeutic options to slow disease progression. One of the reasons for this is that the current-day "gold standard" biomarkers lack adequate sensitivity and specificity to detect early diabetic chronic kidney disease (CKD). This review focuses on the rapidly evolving areas of epigenetics, metabolomics, and the gut microbiome as potential sources of novel biomarkers in diabetes-associated CKD and discusses their relevance to clinical practice. However, it also highlights the problems associated with many studies within these three areas-namely, the lack of adequately powered longitudinal studies, and the lack of reproducibility of results which impede biomarker development and clinical validation in this complex and susceptible population.