Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    Non-negative matrix factorisation improves Centiloid robustness in longitudinal studies
    Bourgeat, P ; Dore, V ; Doecke, J ; Ames, D ; Masters, CL ; Rowe, CC ; Fripp, J ; Villemagne, VL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-02-01)
    BACKGROUND: Centiloid was introduced to harmonise β-Amyloid (Aβ) PET quantification across different tracers, scanners and analysis techniques. Unfortunately, Centiloid still suffers from some quantification disparities in longitudinal analysis when normalising data from different tracers or scanners. In this work, we aim to reduce this variability using a different analysis technique applied to the existing calibration data. METHOD: All PET images from the Centiloid calibration dataset, along with 3762 PET images from the AIBL study were analysed using the recommended SPM pipeline. The PET images were SUVR normalised using the whole cerebellum. All SUVR normalised PiB images from the calibration dataset were decomposed using non-negative matrix factorisation (NMF). The NMF coefficients related to the first component were strongly correlated with global SUVR and were subsequently used as a surrogate for Aβ retention. For each tracer of the calibration dataset, the components of the NMF were computed in a way such that the coefficients of the first component would match those of the corresponding PiB. Given the strong correlations between the SUVR and the NMF coefficients on the calibration dataset, all PET images from AIBL were subsequently decomposed using the computed NMF, and their coefficients transformed into Centiloids. RESULTS: Using the AIBL data, the correlation between the standard Centiloid and the novel NMF-based Centiloid was high in each tracer. The NMF-based Centiloids showed a reduction of outliers, and improved longitudinal consistency. Furthermore, it removed the effects of switching tracers from the longitudinal variance of the Centiloid measure, when assessed using a linear mixed effects model. CONCLUSION: We here propose a novel image driven method to perform the Centiloid quantification. The methods is highly correlated with standard Centiloids while improving the longitudinal reliability when switching tracers. Implementation of this method across multiple studies may lend to more robust and comparable data for future research.
  • Item
    Thumbnail Image
    Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease
    Fazlollahi, A ; Calamante, F ; Liang, X ; Bourgeat, P ; Raniga, P ; Dore, V ; Fripp, J ; Ames, D ; Masters, CL ; Rowe, CC ; Connelly, A ; Villemagne, VL ; Salvado, O (WILEY, 2020-02-01)
    BACKGROUND: Arterial spin labeling (ASL) is an emerging MRI technique for noninvasive measurement of cerebral blood flow (CBF) that has been used to show hemodynamic changes in the brains of people with Alzheimer's disease (AD). CBF changes have been measured using positron emission tomography (PET) across the AD spectrum, but ASL showed limited success in measuring CBF variations in the preclinical phase of AD, where amyloid β (Aβ) plaques accumulate in the decades prior to symptom onset. PURPOSE: To investigate the relationship between CBF measured by multiphase-pseudocontinuous-ASL (MP-PCASL) and Aβ burden as measured by 11 C-PiB PET imaging in a study of cognitively normal (CN) subjects age over 65. STUDY TYPE: Cross-sectional. POPULATION: Forty-six CN subjects including 33 with low levels of Aβ burden and 13 with high levels of Aβ. FIELD STRENGTH/SEQUENCE: 3T/3D MP-PCASL. ASSESSMENT: The MP-PCASL method was chosen because it has a high signal-to-noise ratio. Furthermore, the data were analyzed using an efficient processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, and partial volume effect correction. STATISTICAL TESTS: General Linear Model. RESULTS: In CN subjects positive for Aβ burden (n = 13), we observed a positive correlation between CBF and Aβ burden in the hippocampus, amygdala, caudate (P < 0.01), frontal, temporal, and insula (P < 0.05). DATA CONCLUSION: To the best of our knowledge, this is the first study using MP-PCASL in the study of AD, and the results suggest a potential compensatory hemodynamic mechanism that protects against pathology in the early stages of AD. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:505-513.
  • Item
    Thumbnail Image
    Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease
    Fowler, C ; Rainey-Smith, SR ; Bird, S ; Bomke, J ; Bourgeat, P ; Brown, BM ; Burnham, SC ; Bush, A ; Chadunow, C ; Collins, S ; Doecke, J ; Dore, V ; Ellis, KA ; Evered, L ; Fazlollahi, A ; Fripp, J ; Gardener, SL ; Gibson, S ; Grenfell, R ; Harrison, E ; Head, R ; Jin, L ; Kamer, A ; Lamb, F ; Lautenschlager, NT ; Laws, SM ; Li, Q-X ; Lim, L ; Lim, YY ; Louey, A ; Macaulay, SL ; Mackintosh, L ; Martins, RN ; Maruff, P ; Masters, CL ; McBride, S ; Milicic, L ; Peretti, M ; Pertile, K ; Porter, T ; Radler, M ; Rembach, A ; Robertson, J ; Rodrigues, M ; Rowe, CC ; Rumble, R ; Salvado, O ; Savage, G ; Silbert, B ; Soh, M ; Sohrabi, HR ; Taddei, K ; Taddei, T ; Thai, C ; Trounson, B ; Tyrrell, R ; Vacher, M ; Varghese, S ; Villemagne, VL ; Weinborn, M ; Woodward, M ; Xia, Y ; Ames, D (IOS PRESS, 2021-01-01)
    BACKGROUND: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer's disease dementia (AD)) as an 'Inception cohort' who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an 'Enrichment cohort' (as of 10 April 2019). OBJECTIVE: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. METHODS: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. RESULTS: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. CONCLUSION: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
  • Item
    Thumbnail Image
    Association of beta-Amyloid Level, Clinical Progression, and Longitudinal Cognitive Change in Normal Older Individuals
    Van der Kall, LM ; Thanh, T ; Burnham, SC ; Dore, V ; Mulligan, RS ; Bozinovski, S ; Lamb, F ; Bourgeat, P ; Fripp, J ; Schultz, S ; Lim, YY ; Laws, SM ; Ames, D ; Fowler, C ; Rainey-Smith, SR ; Martins, RN ; Salvado, O ; Robertson, J ; Maruff, P ; Masters, CL ; Villemagne, VL ; Rowe, CC (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-02)
    OBJECTIVE: To determine the effect of β-amyloid (Aβ) level on progression risk to mild cognitive impairment (MCI) or dementia and longitudinal cognitive change in cognitively normal (CN) older individuals. METHODS: All CN from the Australian Imaging Biomarkers and Lifestyle study with Aβ PET and ≥3 years follow-up were included (n = 534; age 72 ± 6 years; 27% Aβ positive; follow-up 5.3 ± 1.7 years). Aβ level was divided using the standardized 0-100 Centiloid scale: <15 CL negative, 15-25 CL uncertain, 26-50 CL moderate, 51-100 CL high, >100 CL very high, noting >25 CL approximates a positive scan. Cox proportional hazards analysis and linear mixed effect models were used to assess risk of progression and cognitive decline. RESULTS: Aβ levels in 63% were negative, 10% uncertain, 10% moderate, 14% high, and 3% very high. Fifty-seven (11%) progressed to MCI or dementia. Compared to negative Aβ, the hazard ratio for progression for moderate Aβ was 3.2 (95% confidence interval [CI] 1.3-7.6; p < 0.05), for high was 7.0 (95% CI 3.7-13.3; p < 0.001), and for very high was 11.4 (95% CI 5.1-25.8; p < 0.001). Decline in cognitive composite score was minimal in the moderate group (-0.02 SD/year, p = 0.05), while the high and very high declined substantially (high -0.08 SD/year, p < 0.001; very high -0.35 SD/year, p < 0.001). CONCLUSION: The risk of MCI or dementia over 5 years in older CN is related to Aβ level on PET, 5% if negative vs 25% if positive but ranging from 12% if 26-50 CL to 28% if 51-100 CL and 50% if >100 CL. This information may be useful for dementia risk counseling and aid design of preclinical AD trials.
  • Item
    Thumbnail Image
    Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer's disease
    Huynh, K ; Lim, WLF ; Giles, C ; Jayawardana, KS ; Salim, A ; Mellett, NA ; Smith, AAT ; Olshansky, G ; Drew, BG ; Chatterjee, P ; Martins, I ; Laws, SM ; Bush, AI ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Arnold, M ; Nho, K ; Saykin, AJ ; Baillie, R ; Han, X ; Kaddurah-Daouk, R ; Martins, RN ; Meikle, PJ (NATURE RESEARCH, 2020-11-10)
    Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation.
  • Item
    Thumbnail Image
    Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance
    Pedrini, S ; Hone, E ; Gupta, VB ; James, I ; Teimouri, E ; Bush, A ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Rainey-Smith, S ; Verdile, G ; Sohrabi, HR ; Raida, MR ; Wenk, MR ; Taddei, K ; Chatterjee, P ; Martins, I ; Laws, SM ; Martins, RN ; Pasinetti, G (IOS PRESS, 2020-01-01)
    BACKGROUND: The link between cholesterol and Alzheimer's disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a "good" lipid complex due to its ability to enable clearance of excess cholesterol via 'cholesterol reverse transport', although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. OBJECTIVE: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. METHODS: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1-42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. RESULTS: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. CONCLUSION: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
  • Item
    Thumbnail Image
    Relationships Between Plasma Lipids Species, Gender, Risk Factors, and Alzheimer's Disease
    Lim, WLF ; Huynh, K ; Chatterjee, P ; Martins, I ; Jayawardana, KS ; Giles, C ; Mellett, NA ; Laws, SM ; Bush, AI ; Rowe, CC ; Villemagne, VL ; Ames, D ; Drew, BG ; Masters, CL ; Meikle, PJ ; Martins, RN ; Götz, J (IOS PRESS, 2020-01-01)
    BACKGROUND: Lipid metabolism is altered in Alzheimer's disease (AD); however, the relationship between AD risk factors (age, APOEɛ4, and gender) and lipid metabolism is not well defined. OBJECTIVE: We investigated whether altered lipid metabolism associated with increased age, gender, and APOE status may contribute to the development of AD by examining these risk factors in healthy controls and also clinically diagnosed AD individuals. METHODS: We performed plasma lipidomic profiling (582 lipid species) of the Australian Imaging, Biomarkers and Lifestyle flagship study of aging cohort (AIBL) using liquid chromatography-mass spectrometry. Linear regression and interaction analysis were used to explore the relationship between risk factors and plasma lipid species. RESULTS: We observed strong associations between plasma lipid species with gender and increasing age in cognitively normal individuals. However, APOEɛ4 was relatively weakly associated with plasma lipid species. Interaction analysis identified differential associations of sphingolipids and polyunsaturated fatty acid esterified lipid species with AD based on age and gender, respectively. These data indicate that the risk associated with age, gender, and APOEɛ4 may, in part, be mediated by changes in lipid metabolism. CONCLUSION: This study extends our existing knowledge of the relationship between the lipidome and AD and highlights the complexity of the relationships between lipid metabolism and AD at different ages and between men and women. This has important implications for how we assess AD risk and also for potential therapeutic strategies involving modulation of lipid metabolic pathways.
  • Item
    Thumbnail Image
    Baseline White Matter Is Associated With Physical Fitness Change in Preclinical Alzheimer's Disease
    Venkatraman, VK ; Steward, CE ; Cox, KL ; Ellis, KA ; Phal, PM ; Sharman, MJ ; Villemagne, VL ; Lai, MMY ; Cyarto, E ; Ames, D ; Szoeke, C ; Rowe, CC ; Masters, CL ; Lautenschlager, NT ; Desmond, PM (FRONTIERS MEDIA SA, 2020-04-29)
    White matter (WM) microstructure is a sensitive marker to distinguish individuals at risk of Alzheimer's disease. The association of objective physical fitness (PF) measures and WM microstructure has not been explored and mixed results reported with physical activity (PA). Longitudinal studies of WM with PA and PF measures have had limited investigation. This study explored the relationship between objective PF measures over 24-months with "normal-appearing" WM microstructure. Data acquired on magnetic resonance imaging was used to measure "normal-appearing" WM microstructure at baseline and 24-months. Clinical variables such as cognitive and blood-based measures were collected longitudinally. Also, as part of the randomized controlled trial of a PA, extensive measures of PA and fitness were obtained over the 24 months. Bilateral corticospinal tracts (CST) and the corpus callosum showed a significant association between PF performance over 24-months and baseline WM microstructural measures. There was no significant longitudinal effect of the intervention or PF performance over 24-months. Baseline WM microstructural measures were significantly associated with PF performance over 24-months in this cohort of participants with vascular risk factors and at risk of Alzheimer's disease with distinctive patterns for each PF test.
  • Item
    Thumbnail Image
    Plasma transferrin and hemopexin are associated with altered A beta uptake and cognitive decline in Alzheimer's disease pathology
    Ashraf, A ; Ashton, NJ ; Chatterjee, P ; Goozee, K ; Shen, K-K ; Fripp, J ; Ames, D ; Rowe, C ; Masters, CL ; Villemagne, V ; Hye, A ; Martins, RN ; So, P-W (BMC, 2020-06-09)
    BACKGROUND: Heme and iron homeostasis is perturbed in Alzheimer's disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. METHODS: Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. RESULTS: Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. CONCLUSIONS: In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
  • Item
    Thumbnail Image
    Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer's disease
    Dhiman, K ; Gupta, VB ; Villemagne, VL ; Eratne, D ; Graham, PL ; Fowler, C ; Bourgeat, P ; Li, Q-X ; Collins, S ; Bush, A ; Rowe, CC ; Masters, CL ; Ames, D ; Hone, E ; Blennow, K ; Zetterberg, H ; Martins, RN (WILEY, 2020-01-01)
    INTRODUCTION: This study assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) in Alzheimer's disease (AD) diagnosis, its association with amyloid and tau pathology, as well as its potential to predict brain atrophy, cognition, and amyloid accumulation. METHODS: CSF NfL concentration was measured in 221 participants from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL). RESULTS: CSF NfL levels as well as NfL/amyloid β (Aβ42) were significantly elevated in AD compared to healthy controls (HC; P < .001), and in mild cognitive impairment (MCI) compared to HC (P = .008 NfL; P < .001 NfL/Aβ42). CSF NfL and NfL/Aβ42 differentiated AD from HC with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 and 0.90, respectively. CSF NfL and NfL/Aβ42 predicted cortical amyloid load, brain atrophy, and cognition. DISCUSSION: CSF NfL is a biomarker of neurodegeneration, correlating with cognitive impairment and brain neuropathology.