Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    No Preview Available
    Randomized Controlled Trial of Melatonin for Sleep Disturbance in Dravet Syndrome: The DREAMS Study
    Myers, KA ; Davey, MJ ; Ching, M ; Ellis, C ; Grinton, BE ; Roten, A ; Lightfoot, PA ; Scheffer, IE (AMER ACAD SLEEP MEDICINE, 2018-01-01)
    Dravet syndrome is a severe developmental and epileptic encephalopathy, in which 75% of patients have sleep disturbance. Melatonin is often used for sleep problems in childhood; however, there is no quality evidence supporting its use in Dravet syndrome. We hypothesized that melatonin would increase total sleep and quality of life for patients with Dravet syndrome.Methods: A double-blind crossover randomized placebo-controlled trial was conducted, comparing 6 mg regular-release melatonin to placebo for patients with Dravet syndrome and sleep disturbance. The primary outcome measure was total sleep measured by actigraphy, with secondary outcomes including wakefulness after sleep onset (WASO), Sleep Disturbance Scale in Children and Quality of Life in Children with Epilepsy 55 questionnaires, caregiver reports of clinical change, seizure diary and serum antiepileptic drug levels. We also compared actigraphy data of patients with Dravet syndrome to an age-matched healthy control group.Results: A total of 13 patients completed the study. There was no difference in total sleep or WASO between melatonin and placebo. However, of the 11 patients for whom caregivers reported a clear clinical difference between treatments (blinded), 8 reported improvement on melatonin (P < .05). Interestingly, when compared to patients in the control group, patients with Dravet syndrome had significantly increased total sleep (P = .002).Conclusions: Melatonin did not increase total sleep; however, blinded caregiver reports indicate treatment with melatonin provided considerable clinical benefit for some patients with Dravet syndrome and sleep disturbance.
  • Item
    Thumbnail Image
    ADGRV1 is implicated in myoclonic epilepsy
    Myers, KA ; Nasioulas, S ; Boys, A ; McMahon, JM ; Slater, H ; Lockhart, P ; du Sart, D ; Scheffer, IE (WILEY, 2018-02)
    OBJECTIVE: To investigate the significance of variation in ADGRV1 (also known as GPR98, MASS1, and VLGR1), MEF2C, and other genes at the 5q14.3 chromosomal locus in myoclonic epilepsy. METHODS: We studied the epilepsy phenotypes of 4 individuals with 5q14.3 deletion and found that all had myoclonic seizures. We then screened 6 contiguous genes at 5q14.3, MEF2C, CETN3, MBLAC2, POLR3G, LYSMD3, and ADGRV1, in a 95-patient cohort with epilepsy and myoclonic seizures. Of these genes, point mutations in MEF2C cause a phenotype involving seizures and intellectual disability. A role for ADGRV1 in epilepsy has been proposed previously, based on a recessive mutation in the Frings mouse model of audiogenic seizures, as well as a shared homologous region with another epilepsy gene, LGI1. RESULTS: Six patients from the myoclonic epilepsy cohort had likely pathogenic ultra-rare ADGRV1 variants, and statistical analysis showed that ultra-rare variants were significantly overrepresented when compared to healthy population data from the Genome Aggregation Database. Of the remaining genes, no definite pathogenic variants were identified. SIGNIFICANCE: Our data suggest that the ADGRV1 variation contributes to epilepsy with myoclonic seizures, although the inheritance pattern may be complex in many cases. In patients with 5q14.3 deletion and epilepsy, ADGRV1 haploinsufficiency likely contributes to seizure development. The latter is a shift from current thinking, as MEF2C haploinsufficiency has been considered the main cause of epilepsy in 5q14.3 deletion syndrome. In cases of 5q14.3 deletion and epilepsy, seizures likely occur due to haploinsufficiency of one or both of ADGRV1 and MEF2C.
  • Item
    Thumbnail Image
    Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene WDR45
    Carvill, GL ; Liu, A ; Mandelstam, S ; Schneider, A ; Lacroix, A ; Zemel, M ; McMahon, JM ; Bello-Espinosa, L ; Mackay, M ; Wallace, G ; Waak, M ; Zhang, J ; Yang, X ; Malone, S ; Zhang, Y-H ; Mefford, HC ; Scheffer, IE (WILEY, 2018-01)
    Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation sequencing of WDR45 in 655 patients with developmental and epileptic encephalopathies. We identified 3/655 patients with DEE plus 4 additional patients with de novo WDR45 pathogenic variants (6 truncations, 1 missense); all were female. Six presented with DEE and 1 with early onset focal seizures and profound regression. Median seizure onset was 12 months, 6 had multiple seizure types, and 5/7 had focal seizures. Three patients had magnetic resonance susceptibility-weighted imaging; blooming was noted in the globus pallidi and substantia nigra in the 2 older children aged 4 and 9 years, consistent with iron accumulation. We show that de novo pathogenic variants are associated with a range of developmental and epileptic encephalopathies with profound developmental consequences.
  • Item
    Thumbnail Image
    Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay
    Myers, KA ; Bennett, MF ; Chow, CW ; Carden, SM ; Mandelstam, SA ; Bahlo, M ; Scheffer, IE (WILEY, 2018-01)
    Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in β-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however β-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.
  • Item
    Thumbnail Image
    Gain-of-function HCN2 variants in genetic epilepsy
    Li, M ; Maljevic, S ; Phillips, AM ; Petrovski, S ; Hildebrand, MS ; Burgess, R ; Mount, T ; Zara, F ; Striano, P ; Schubert, J ; Thiele, H ; Nuernberg, P ; Wong, M ; Weisenberg, JL ; Thio, LL ; Lerche, H ; Scheffer, IE ; Berkovic, SF ; Petrou, S ; Reid, CA (WILEY, 2018-02)
    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism.
  • Item
    Thumbnail Image
    Sleep problems in Dravet syndrome: a modifiable comorbidity
    Licheni, SH ; Mcmahon, JM ; Schneider, AL ; Davey, MJ ; Scheffer, IE (WILEY, 2018-02)
    AIM: Many children with severe developmental and epileptic encephalopathies experience significant sleep disturbance, causing major disruption to the family's quality of life. We aimed to determine the frequency and nature of sleep problems in individuals with Dravet syndrome. METHODS: The Sleep Disturbance Scale for Children and a seizure questionnaire were distributed to the parents/guardians of 96 patients with Dravet syndrome. Sixteen patients had two nights of home oximetry. RESULTS: Fifty-seven out of 96 questionnaires were completed. Forty-three out of 57 (75%) individuals had sleep problems. Twenty-five out of 57 (44%) individuals had an abnormal total sleep score, with difficulty initiating and maintaining sleep (22 out of 57, 39%), sleep-wake transition disorders (20 out of 57, 35%), and sleep breathing disorders (19 out of 57, 33%). Twenty-two out of 57 (39%) individuals took medication to assist sleep, predominantly melatonin (n=14). Thirty out of 57 (53%) recently had nocturnal seizures. Overnight oximetry showed 14 out of 16 (88%) had a higher oxygen desaturation index (>3%), and six out of 16 (38%) had higher mean pulse rates than normative values. Home oximetry was normal or inconclusive in all patients. INTERPRETATION: Seventy-five per cent of individuals with Dravet syndrome had sleep problems, highlighting the importance of routinely assessing sleep and initiating appropriate behavioural and pharmacological interventions to improve the patient and family's quality of life. A high oxygen desaturation index and mean pulse rates on pulse oximetry may reflect unrecognized nocturnal seizures. WHAT THIS PAPER ADDS: More than 70% of patients with Dravet syndrome have sleep problems. Difficulty initiating and maintaining sleep was most common, particularly in those older than 20 years. Second most common were sleep-wake transition disorders, affecting more than 50% of those younger than 5 years. Sleep breathing disorders were a frequent problem across all age groups. Oximetry was not diagnostic of sleep-disordered breathing or obvious seizures.
  • Item
  • Item
    Thumbnail Image
    Heart rate variability in epilepsy: A potential biomarker of sudden unexpected death in epilepsy risk
    Myers, KA ; Bello-Espinosa, LE ; Symonds, JD ; Zuberi, SM ; Clegg, R ; Sadleir, LG ; Buchhalter, J ; Scheffer, IE (WILEY, 2018-07)
    OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is a tragic and devastating event for which the underlying pathophysiology remains poorly understood; this study investigated whether abnormalities in heart rate variability (HRV) are linked to SUDEP in patients with epilepsy due to mutations in sodium channel (SCN) genes. METHODS: We retrospectively evaluated HRV in epilepsy patients using electroencephalographic studies to study the potential contribution of autonomic dysregulation to SUDEP risk. We extracted HRV data, in wakefulness and sleep, from 80 patients with drug-resistant epilepsy, including 40 patients with mutations in SCN genes and 40 control patients with non-SCN drug-resistant epilepsy. From the SCN group, 10 patients had died of SUDEP. We compared HRV between SUDEP and non-SUDEP groups, specifically studying awake HRV and sleep:awake HRV ratios. RESULTS: The SUDEP patients had the most severe autonomic dysregulation, showing lower awake HRV and either extremely high or extremely low ratios of sleep-to-awake HRV in a subgroup analysis. A secondary analysis comparing the SCN and non-SCN groups indicated that autonomic dysfunction was slightly worse in the SCN epilepsy group. SIGNIFICANCE: These findings suggest that autonomic dysfunction is associated with SUDEP risk in patients with epilepsy due to sodium channel mutations. The relationship of HRV to SUDEP merits further study; HRV may eventually have potential as a biomarker of SUDEP risk, which would allow for more informed counseling of patients and families, and also serve as a useful outcome measure for research aimed at developing therapies and interventions to reduce SUDEP risk.
  • Item
    Thumbnail Image
    A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy
    Howell, KB ; Eggers, S ; Dalziel, K ; Riseley, J ; Mandelstam, S ; Myers, CT ; McMahon, JM ; Schneider, A ; Carvill, GL ; Mefford, HC ; Scheffer, IE ; Harvey, AS (WILEY, 2018-06)
    OBJECTIVE: The severe epilepsies of infancy (SEI) are a devastating group of disorders that pose a major care and economic burden on society; early diagnosis is critical for optimal management. This study sought to determine the incidence and etiologies of SEI, and model the yield and cost-effectiveness of early genetic testing. METHODS: A population-based study was undertaken of the incidence, etiologies, and cost-effectiveness of a whole exome sequencing-based gene panel (targeted WES) in infants with SEI born during 2011-2013, identified through electroencephalography (EEG) and neonatal databases. SEI was defined as seizure onset before age 18 months, frequent seizures, epileptiform EEG, and failure of ≥2 antiepileptic drugs. Medical records, investigations, MRIs, and EEGs were analyzed, and genetic testing was performed if no etiology was identified. Economic modeling was performed to determine yield and cost-effectiveness of investigation of infants with unknown etiology at epilepsy onset, incorporating targeted WES at different stages of the diagnostic pathway. RESULTS: Of 114 infants with SEI (incidence = 54/100 000 live births/y), the etiology was determined in 76 (67%): acquired brain injuries (n = 14), focal cortical dysplasias (n = 14), other brain malformations (n = 17), channelopathies (n = 11), chromosomal (n = 9), metabolic (n = 6), and other genetic (n = 5) disorders. Modeling showed that incorporating targeted WES increased diagnostic yield compared to investigation without targeted WES (48/86 vs 39/86). Early targeted WES had lower total cost ($677 081 U.S. dollars [USD] vs $738 136 USD) than late targeted WES. A pathway with early targeted WES and limited metabolic testing yielded 7 additional diagnoses compared to investigation without targeted WES (46/86 vs 39/86), with lower total cost ($455 597 USD vs $661 103 USD), lower cost per diagnosis ($9904 USD vs $16 951 USD), and a dominant cost-effectiveness ratio. SIGNIFICANCE: Severe epilepsies occur in 1 in 2000 infants, with the etiology identified in two-thirds, most commonly malformative. Early use of targeted WES yields more diagnoses at lower cost. Early genetic diagnosis will enable timely administration of precision medicines, once developed, with the potential to improve long-term outcome.
  • Item
    Thumbnail Image
    The epilepsy phenotypic spectrum associated with a recurrent CUX2 variant
    Chatron, N ; Moller, RS ; Champaigne, NL ; Schneider, AL ; Kuechler, A ; Labalme, A ; Simonet, T ; Baggett, L ; Bardel, C ; Kamsteeg, E-J ; Pfundt, R ; Romano, C ; Aronsson, J ; Alberti, A ; Vinci, M ; Miranda, MJ ; Lacroix, A ; Marjanovic, D ; des Portes, V ; Edery, P ; Wieczorek, D ; Gardella, E ; Scheffer, IE ; Mefford, H ; Sanlaville, D ; Carvill, GL ; Lesca, G (WILEY, 2018-05)
    OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.