Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 111
  • Item
    Thumbnail Image
    Exploring individual fixel-based white matter abnormalities in epilepsy
    Mito, R ; Pedersen, M ; Pardoe, H ; Parker, D ; Smith, RE ; Cameron, J ; Scheffer, IE ; Berkovic, SF ; Vaughan, DN ; Jackson, GD (OXFORD UNIV PRESS, 2023-12-28)
    Diffusion MRI has provided insight into the widespread structural connectivity changes that characterize epilepsies. Although syndrome-specific white matter abnormalities have been demonstrated, studies to date have predominantly relied on statistical comparisons between patient and control groups. For diffusion MRI techniques to be of clinical value, they should be able to detect white matter microstructural changes in individual patients. In this study, we apply an individualized approach to a technique known as fixel-based analysis, to examine fibre-tract-specific abnormalities in individuals with epilepsy. We explore the potential clinical value of this individualized fixel-based approach in epilepsy patients with differing syndromic diagnoses. Diffusion MRI data from 90 neurologically healthy control participants and 10 patients with epilepsy (temporal lobe epilepsy, progressive myoclonus epilepsy, and Dravet Syndrome, malformations of cortical development) were included in this study. Measures of fibre density and cross-section were extracted for all participants across brain white matter fixels, and mean values were computed within select tracts-of-interest. Scanner harmonized and normalized data were then used to compute Z-scores for individual patients with epilepsy. White matter abnormalities were observed in distinct patterns in individual patients with epilepsy, both at the tract and fixel level. For patients with specific epilepsy syndromes, the detected white matter abnormalities were in line with expected syndrome-specific clinical phenotypes. In patients with lesional epilepsies (e.g. hippocampal sclerosis, periventricular nodular heterotopia, and bottom-of-sulcus dysplasia), white matter abnormalities were spatially concordant with lesion location. This proof-of-principle study demonstrates the clinical potential of translating advanced diffusion MRI methodology to individual-patient-level use in epilepsy. This technique could be useful both in aiding diagnosis of specific epilepsy syndromes, and in localizing structural abnormalities, and is readily amenable to other neurological disorders. We have included code and data for this study so that individualized white matter changes can be explored robustly in larger cohorts in future work.
  • Item
    No Preview Available
    Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature.
    LaFlamme, CW ; Rastin, C ; Sengupta, S ; Pennington, HE ; Russ-Hall, SJ ; Schneider, AL ; Bonkowski, ES ; Almanza Fuerte, EP ; Galey, M ; Goffena, J ; Gibson, SB ; Allan, TJ ; Nyaga, DM ; Lieffering, N ; Hebbar, M ; Walker, EV ; Darnell, D ; Olsen, SR ; Kolekar, P ; Djekidel, N ; Rosikiewicz, W ; McConkey, H ; Kerkhof, J ; Levy, MA ; Relator, R ; Lev, D ; Lerman-Sagie, T ; Park, KL ; Alders, M ; Cappuccio, G ; Chatron, N ; Demain, L ; Genevieve, D ; Lesca, G ; Roscioli, T ; Sanlaville, D ; Tedder, ML ; Hubshman, MW ; Ketkar, S ; Dai, H ; Worley, KC ; Rosenfeld, JA ; Chao, H-T ; Undiagnosed Diseases Network, ; Neale, G ; Carvill, GL ; University of Washington Center for Rare Disease Research, ; Wang, Z ; Berkovic, SF ; Sadleir, LG ; Miller, DE ; Scheffer, IE ; Sadikovic, B ; Mefford, HC (Cold Spring Harbor Laboratory, 2023-10-12)
    Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
  • Item
    No Preview Available
    Aicardi Syndrome Is a Genetically Heterogeneous Disorder
    Ha, TT ; Burgess, R ; Newman, M ; Moey, C ; Mandelstam, SA ; Gardner, AE ; Ivancevic, AM ; Pham, D ; Kumar, R ; Smith, N ; Patel, C ; Malone, S ; Ryan, MM ; Calvert, S ; van Eyk, CL ; Lardelli, M ; Berkovic, SF ; Leventer, RJ ; Richards, LJ ; Scheffer, IE ; Gecz, J ; Corbett, MA (MDPI, 2023-08)
    Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.
  • Item
    Thumbnail Image
    Familial Mesial Temporal Lobe Epilepsy: Clinical Spectrum and Genetic Evidence for a Polygenic Architecture
    Harris, RV ; Oliver, KL ; Perucca, P ; Striano, P ; Labate, A ; Riva, A ; Grinton, BE ; Reid, J ; Hutton, J ; Todaro, M ; O'Brien, TJ ; Kwan, P ; Sadleir, LG ; Mullen, SA ; Dazzo, E ; Crompton, DE ; Scheffer, IE ; Bahlo, M ; Nobile, C ; Gambardella, A ; Berkovic, SF (WILEY, 2023-11)
    OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.
  • Item
    No Preview Available
    Recognition and epileptology of protracted CLN3 disease
    Cameron, JM ; Damiano, JA ; Grinton, B ; Carney, PW ; McKelvie, P ; Silbert, P ; Lawn, N ; Scheffer, IE ; Oliver, KL ; Hildebrand, MS ; Berkovic, SF (WILEY, 2023-07)
    OBJECTIVE: This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder. METHODS: We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families. RESULTS: Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort. SIGNIFICANCE: We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.
  • Item
    No Preview Available
    Genes4Epilepsy: An epilepsy gene resource
    Oliver, KL ; Scheffer, IE ; Bennett, MF ; Grinton, BE ; Bahlo, M ; Berkovic, SF (WILEY, 2023-05)
    OBJECTIVE: "How many epilepsy genes are there?" is a frequently asked question. We sought to (1) provide a curated list of genes that cause monogenic epilepsies, and (2) compare and contrast epilepsy gene panels from multiple sources. METHODS: We compared genes included on the epilepsy panels (as of July 29, 2022) of four clinical diagnostic providers: Invitae, GeneDx, Fulgent Genetics, and Blueprint Genetics; and two research resources: PanelApp Australia and ClinGen. A master list of all unique genes was supplemented by additional genes identified via PubMed searches up until August 15, 2022, using the search terms "genetics" AND/OR "epilepsy" AND/OR "seizures". Evidence supporting a monogenic role for all genes was manually reviewed; those with limited or disputed evidence were excluded. All genes were annotated according to inheritance pattern and broad epilepsy phenotype. RESULTS: The comparison of genes included on epilepsy clinical panels revealed high heterogeneity in both number of genes (range: 144-511) and content. Just 111 genes (15.5%) were included on all four clinical panels. Subsequent manual curation of all "epilepsy genes" identified >900 monogenic etiologies. Almost 90% of genes were associated with developmental and epileptic encephalopathies. By comparison only 5% of genes were associated with monogenic causes of "common epilepsies" (i.e., generalized and focal epilepsy syndromes). Autosomal recessive genes were most frequent (56% of genes); however, this varied according to the associated epilepsy phenotype(s). Genes associated with common epilepsy syndromes were more likely to be dominantly inherited and associated with multiple epilepsy types. SIGNIFICANCE: Our curated list of monogenic epilepsy genes is publicly available: github.com/bahlolab/genes4epilepsy and will be regularly updated. This gene resource can be utilized to target genes beyond those included on clinical gene panels, for gene enrichment methods and candidate gene prioritization. We invite ongoing feedback and contributions from the scientific community via genes4-epilepsy@unimelb.edu.au.
  • Item
    No Preview Available
    A founder event causing a dominant childhood epilepsy survives 800 years through weak selective pressure
    Grinton, BE ; Robertson, E ; Fearnley, LG ; Scheffer, IE ; Marson, AG ; O'Brien, TJ ; Pickrell, WO ; Rees, M ; Sisodiya, SM ; Balding, DJ ; Bennett, MF ; Bahlo, M ; Berkovic, SF ; Oliver, KL (CELL PRESS, 2022-11-03)
    Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.
  • Item
    No Preview Available
    Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy
    Khoshkhoo, S ; Wang, Y ; Chahine, Y ; Erson-Omay, EZ ; Robert, SM ; Kiziltug, E ; Damisah, EC ; Nelson-Williams, C ; Zhu, G ; Kong, W ; Huang, AY ; Stronge, E ; Phillips, HW ; Chhouk, BH ; Bizzotto, S ; Chen, MH ; Adikari, TN ; Ye, Z ; Witkowski, T ; Lai, D ; Lee, N ; Lokan, J ; Scheffer, IE ; Berkovic, SF ; Haider, S ; Hildebrand, MS ; Yang, E ; Gunel, M ; Lifton, RP ; Richardson, RM ; Bluemcke, I ; Alexandrescu, S ; Huttner, A ; Heinzen, EL ; Zhu, J ; Poduri, A ; DeLanerolle, N ; Spencer, DD ; Lee, EA ; Walsh, CA ; Kahle, KT (AMER MEDICAL ASSOC, 2023-06)
    IMPORTANCE: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. OBJECTIVE: To test the association between pathogenic somatic variants in the hippocampus and MTLE. DESIGN, SETTING, AND PARTICIPANTS: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. EXPOSURES: Drug-resistant MTLE. MAIN OUTCOMES AND MEASURES: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. RESULTS: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. CONCLUSIONS AND RELEVANCE: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.
  • Item
    Thumbnail Image
    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
    Motelow, JE ; Povysil, G ; Dhindsa, RS ; Stanley, KE ; Allen, AS ; Feng, Y-CA ; Howrigan, DP ; Abbott, LE ; Tashman, K ; Cerrato, F ; Cusick, C ; Singh, T ; Heyne, H ; Byrnes, AE ; Churchhouse, C ; Watts, N ; Solomonson, M ; Lal, D ; Gupta, N ; Neale, BM ; Cavalleri, GL ; Cossette, P ; Cotsapas, C ; De Jonghe, P ; Dixon-Salazar, T ; Guerrini, R ; Hakonarson, H ; Heinzen, EL ; Helbig, I ; Kwan, P ; Marson, AG ; Petrovski, S ; Kamalakaran, S ; Sisodiya, SM ; Stewart, R ; Weckhuysen, S ; Depondt, C ; Dlugos, DJ ; Scheffer, IE ; Striano, P ; Freyer, C ; Krause, R ; May, P ; McKenna, K ; Regan, BM ; Bennett, CA ; Leu, C ; Leech, SL ; O'Brien, TJ ; Todaro, M ; Stamberger, H ; Andrade, DM ; Ali, QZ ; Sadoway, TR ; Krestel, H ; Schaller, A ; Papacostas, SS ; Kousiappa, I ; Tanteles, GA ; Christou, Y ; Sterbova, K ; Vlckova, M ; Sedlackova, L ; Lassuthova, P ; Klein, KM ; Rosenow, F ; Reif, PS ; Knake, S ; Neubauer, BA ; Zimprich, F ; Feucht, M ; Reinthaler, EM ; Kunz, WS ; Zsurka, G ; Surges, R ; Baumgartner, T ; von Wrede, R ; Pendziwiat, M ; Muhle, H ; Rademacher, A ; van Baalen, A ; von Spiczak, S ; Stephani, U ; Afawi, Z ; Korczyn, AD ; Kanaan, M ; Canavati, C ; Kurlemann, G ; Muller-Schluter, K ; Kluger, G ; Haeusler, M ; Blatt, I ; Lemke, JR ; Krey, I ; Weber, YG ; Wolking, S ; Becker, F ; Lauxmann, S ; Bosselmann, C ; Kegele, J ; Hengsbach, C ; Rau, S ; Steinhoff, BJ ; Schulze-Bonhage, A ; Borggraefe, I ; Schankin, CJ ; Schubert-Bast, S ; Schreiber, H ; Mayer, T ; Korinthenberg, R ; Brockmann, K ; Wolff, M ; Dennig, D ; Madeleyn, R ; Kalviainen, R ; Saarela, A ; Timonen, O ; Linnankivi, T ; Lehesjoki, A-E ; Rheims, S ; Lesca, G ; Ryvlin, P ; Maillard, L ; Valton, L ; Derambure, P ; Bartolomei, F ; Hirsch, E ; Michel, V ; Chassoux, F ; Rees, M ; Chung, S-K ; Pickrell, WO ; Powell, R ; Baker, MD ; Fonferko-Shadrach, B ; Lawthom, C ; Anderson, J ; Schneider, N ; Balestrini, S ; Zagaglia, S ; Braatz, V ; Johnson, MR ; Auce, P ; Sills, GJ ; Baum, LW ; Sham, PC ; Cherny, SS ; Lui, CHT ; Delanty, N ; Doherty, CP ; Shukralla, A ; El-Naggar, H ; Widdess-Walsh, P ; Barisi, N ; Canafoglia, L ; Franceschetti, S ; Castellotti, B ; Granata, T ; Ragona, F ; Zara, F ; Iacomino, M ; Riva, A ; Madia, F ; Vari, MS ; Salpietro, V ; Scala, M ; Mancardi, MM ; Nobili, L ; Amadori, E ; Giacomini, T ; Bisulli, F ; Pippucci, T ; Licchetta, L ; Minardi, R ; Tinuper, P ; Muccioli, L ; Mostacci, B ; Gambardella, A ; Labate, A ; Annesi, G ; Manna, L ; Gagliardi, M ; Parrini, E ; Mei, D ; Vetro, A ; Bianchini, C ; Montomoli, M ; Doccini, V ; Barba, C ; Hirose, S ; Ishii, A ; Suzuki, T ; Inoue, Y ; Yamakawa, K ; Beydoun, A ; Nasreddine, W ; Zgheib, NK ; Tumiene, B ; Utkus, A ; Sadleir, LG ; King, C ; Caglayan, SH ; Arslan, M ; Yapici, Z ; Topaloglu, P ; Kara, B ; Yis, U ; Turkdogan, D ; Gundogdu-Eken, A ; Bebek, N ; Tsai, M-H ; Ho, C-J ; Lin, C-H ; Lin, K-L ; Chou, I-J ; Poduri, A ; Shiedley, BR ; Shain, C ; Noebels, JL ; Goldman, A ; Busch, RM ; Jehi, L ; Najm, IM ; Ferguson, L ; Khoury, J ; Glauser, TA ; Clark, PO ; Buono, RJ ; Ferraro, TN ; Sperling, MR ; Lo, W ; Privitera, M ; French, JA ; Schachter, S ; Kuzniecky, R ; Devinsky, O ; Hegde, M ; Greenberg, DA ; Ellis, CA ; Goldberg, E ; Helbig, KL ; Cosico, M ; Vaidiswaran, P ; Fitch, E ; Berkovic, SF ; Lerche, H ; Lowenstein, DH ; Goldstein, DB (CELL PRESS, 2021-06-03)
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
  • Item
    Thumbnail Image
    Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies
    Ye, Z ; Bennett, MF ; Bahlo, M ; Scheffer, IE ; Berkovic, SF ; Perucca, P ; Hildebrand, MS (TAYLOR & FRANCIS LTD, 2021-11-02)
    INTRODUCTION: Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED: The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION: These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.