Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 104
  • Item
    No Preview Available
    A founder event causing a dominant childhood epilepsy survives 800 years through weak selective pressure
    Grinton, BE ; Robertson, E ; Fearnley, LG ; Scheffer, IE ; Marson, AG ; O'Brien, TJ ; Pickrell, WO ; Rees, M ; Sisodiya, SM ; Balding, DJ ; Bennett, MF ; Bahlo, M ; Berkovic, SF ; Oliver, KL (CELL PRESS, 2022-11-03)
    Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.
  • Item
    Thumbnail Image
    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
    Motelow, JE ; Povysil, G ; Dhindsa, RS ; Stanley, KE ; Allen, AS ; Feng, Y-CA ; Howrigan, DP ; Abbott, LE ; Tashman, K ; Cerrato, F ; Cusick, C ; Singh, T ; Heyne, H ; Byrnes, AE ; Churchhouse, C ; Watts, N ; Solomonson, M ; Lal, D ; Gupta, N ; Neale, BM ; Cavalleri, GL ; Cossette, P ; Cotsapas, C ; De Jonghe, P ; Dixon-Salazar, T ; Guerrini, R ; Hakonarson, H ; Heinzen, EL ; Helbig, I ; Kwan, P ; Marson, AG ; Petrovski, S ; Kamalakaran, S ; Sisodiya, SM ; Stewart, R ; Weckhuysen, S ; Depondt, C ; Dlugos, DJ ; Scheffer, IE ; Striano, P ; Freyer, C ; Krause, R ; May, P ; McKenna, K ; Regan, BM ; Bennett, CA ; Leu, C ; Leech, SL ; O'Brien, TJ ; Todaro, M ; Stamberger, H ; Andrade, DM ; Ali, QZ ; Sadoway, TR ; Krestel, H ; Schaller, A ; Papacostas, SS ; Kousiappa, I ; Tanteles, GA ; Christou, Y ; Sterbova, K ; Vlckova, M ; Sedlackova, L ; Lassuthova, P ; Klein, KM ; Rosenow, F ; Reif, PS ; Knake, S ; Neubauer, BA ; Zimprich, F ; Feucht, M ; Reinthaler, EM ; Kunz, WS ; Zsurka, G ; Surges, R ; Baumgartner, T ; von Wrede, R ; Pendziwiat, M ; Muhle, H ; Rademacher, A ; van Baalen, A ; von Spiczak, S ; Stephani, U ; Afawi, Z ; Korczyn, AD ; Kanaan, M ; Canavati, C ; Kurlemann, G ; Muller-Schluter, K ; Kluger, G ; Haeusler, M ; Blatt, I ; Lemke, JR ; Krey, I ; Weber, YG ; Wolking, S ; Becker, F ; Lauxmann, S ; Bosselmann, C ; Kegele, J ; Hengsbach, C ; Rau, S ; Steinhoff, BJ ; Schulze-Bonhage, A ; Borggraefe, I ; Schankin, CJ ; Schubert-Bast, S ; Schreiber, H ; Mayer, T ; Korinthenberg, R ; Brockmann, K ; Wolff, M ; Dennig, D ; Madeleyn, R ; Kalviainen, R ; Saarela, A ; Timonen, O ; Linnankivi, T ; Lehesjoki, A-E ; Rheims, S ; Lesca, G ; Ryvlin, P ; Maillard, L ; Valton, L ; Derambure, P ; Bartolomei, F ; Hirsch, E ; Michel, V ; Chassoux, F ; Rees, M ; Chung, S-K ; Pickrell, WO ; Powell, R ; Baker, MD ; Fonferko-Shadrach, B ; Lawthom, C ; Anderson, J ; Schneider, N ; Balestrini, S ; Zagaglia, S ; Braatz, V ; Johnson, MR ; Auce, P ; Sills, GJ ; Baum, LW ; Sham, PC ; Cherny, SS ; Lui, CHT ; Delanty, N ; Doherty, CP ; Shukralla, A ; El-Naggar, H ; Widdess-Walsh, P ; Barisi, N ; Canafoglia, L ; Franceschetti, S ; Castellotti, B ; Granata, T ; Ragona, F ; Zara, F ; Iacomino, M ; Riva, A ; Madia, F ; Vari, MS ; Salpietro, V ; Scala, M ; Mancardi, MM ; Nobili, L ; Amadori, E ; Giacomini, T ; Bisulli, F ; Pippucci, T ; Licchetta, L ; Minardi, R ; Tinuper, P ; Muccioli, L ; Mostacci, B ; Gambardella, A ; Labate, A ; Annesi, G ; Manna, L ; Gagliardi, M ; Parrini, E ; Mei, D ; Vetro, A ; Bianchini, C ; Montomoli, M ; Doccini, V ; Barba, C ; Hirose, S ; Ishii, A ; Suzuki, T ; Inoue, Y ; Yamakawa, K ; Beydoun, A ; Nasreddine, W ; Zgheib, NK ; Tumiene, B ; Utkus, A ; Sadleir, LG ; King, C ; Caglayan, SH ; Arslan, M ; Yapici, Z ; Topaloglu, P ; Kara, B ; Yis, U ; Turkdogan, D ; Gundogdu-Eken, A ; Bebek, N ; Tsai, M-H ; Ho, C-J ; Lin, C-H ; Lin, K-L ; Chou, I-J ; Poduri, A ; Shiedley, BR ; Shain, C ; Noebels, JL ; Goldman, A ; Busch, RM ; Jehi, L ; Najm, IM ; Ferguson, L ; Khoury, J ; Glauser, TA ; Clark, PO ; Buono, RJ ; Ferraro, TN ; Sperling, MR ; Lo, W ; Privitera, M ; French, JA ; Schachter, S ; Kuzniecky, R ; Devinsky, O ; Hegde, M ; Greenberg, DA ; Ellis, CA ; Goldberg, E ; Helbig, KL ; Cosico, M ; Vaidiswaran, P ; Fitch, E ; Berkovic, SF ; Lerche, H ; Lowenstein, DH ; Goldstein, DB (CELL PRESS, 2021-06-03)
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
  • Item
    Thumbnail Image
    Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies
    Ye, Z ; Bennett, MF ; Bahlo, M ; Scheffer, IE ; Berkovic, SF ; Perucca, P ; Hildebrand, MS (TAYLOR & FRANCIS LTD, 2021-11-02)
    INTRODUCTION: Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED: The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION: These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
  • Item
    Thumbnail Image
    Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions
    Green, TE ; Motelow, JE ; Bennett, MF ; Ye, Z ; Bennett, CA ; Griffin, NG ; Damiano, JA ; Leventer, RJ ; Freeman, JL ; Harvey, AS ; Lockhart, PJ ; Sadleir, LG ; Boys, A ; Scheffer, IE ; Major, H ; Darbro, BW ; Bahlo, M ; Goldstein, DB ; Kerrigan, JF ; Heinzen, EL ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2022-07-21)
    Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.
  • Item
    Thumbnail Image
    UNC13B and focal epilepsy
    Green, TE ; Scheffer, IE ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2022-04-29)
  • Item
    Thumbnail Image
    Rare sudden unexpected death in epilepsy SCN5A variants cause changes in channel function implicating cardiac arrhythmia as a cause of death
    Soh, MS ; Bagnall, RD ; Semsarian, C ; Scheffer, IE ; Berkovic, SF ; Reid, CA (WILEY, 2022-06)
    Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in epilepsy. The underlying pathological mechanisms are likely to be multifactorial. Cardiac arrhythmia has been suggested as a cause of death in some patients with SUDEP. SCN5A encodes the cardiac Nav 1.5 sodium channel. SCN5A variants that result in either loss or gain of channel function cause cardiac arrhythmias. Rare SCN5A variants have been reported in SUDEP cases, but the impact of these variants on channel function is unknown. Here, we use whole-cell voltage clamp recordings to perform functional analyses of rare SCN5A SUDEP variants, p.V223G, p.I397V, and p.R523C. Expression and biophysical properties, including activation, inactivation, and recovery from inactivation, were probed. Each SCN5A variant significantly impacted human NaV 1.5 channel function, indicating that they could cause cardiac arrhythmias. The patient carrying the p.R523C variant was on lamotrigine, an antiseizure medication implicated in SUDEP. Therapeutic concentration of lamotrigine caused a slowing of the rate of recovery from inactivation and a hyperpolarizing shift in the voltage of inactivation of human NaV 1.5 wild-type, but not p.R523C channels, implicating a gene-by-drug interaction. These data suggest that SCN5A arrhythmogenic variants may confer increased risk of sudden death in individuals with epilepsy.
  • Item
    Thumbnail Image
    Defective lipid signalling caused by mutations in PIK3C2B underlies focal epilepsy
    Gozzelino, L ; Kochlamazashvili, G ; Baldassari, S ; Mackintosh, AI ; Licchetta, L ; Iovino, E ; Liu, YC ; Bennett, CA ; Bennett, MF ; Damiano, JA ; Zsurka, G ; Marconi, C ; Giangregorio, T ; Magini, P ; Kuijpers, M ; Maritzen, T ; Norata, GD ; Baulac, S ; Canafoglia, L ; Seri, M ; Tinuper, P ; Scheffer, IE ; Bahlo, M ; Berkovic, SF ; Hildebrand, MS ; Kunz, WS ; Giordano, L ; Bisulli, F ; Martini, M ; Haucke, V ; Hirsch, E ; Pippucci, T (OXFORD UNIV PRESS, 2022-07-29)
    Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2β, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.
  • Item
    Thumbnail Image
    Mosaicism in tuberous sclerosis complex: Lowering the threshold for clinical reporting
    Ye, Z ; Lin, S ; Zhao, X ; Bennett, MF ; Brown, NJ ; Wallis, M ; Gao, X ; Sun, L ; Wu, J ; Vedururu, R ; Witkowski, T ; Gardiner, F ; Stutterd, C ; Duan, J ; Mullen, SA ; McGillivray, G ; Bodek, S ; Valente, G ; Reagan, M ; Yao, Y ; Li, L ; Chen, L ; Boys, A ; Adikari, TN ; Cao, D ; Hu, Z ; Beshay, V ; Zhang, VW ; Berkovic, SF ; Scheffer, IE ; Liao, J ; Hildebrand, MS (WILEY-HINDAWI, 2022-12)
    Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.
  • Item
    Thumbnail Image
    Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery
    Oliver, KL ; Ellis, CA ; Scheffer, IE ; Ganesan, S ; Leu, C ; Sadleir, LG ; Heinzen, EL ; Mefford, HC ; Bass, AJ ; Curtis, SW ; Harris, R ; Whiteman, DC ; Helbig, I ; Ottman, R ; Epstein, MP ; Bahlo, M ; Berkovic, SF (ELSEVIER, 2022-07)
    BACKGROUND: The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS: Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS: Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION: The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING: National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.
  • Item
    Thumbnail Image
    Functional correlates of clinical phenotype and severity in recurrent SCN2A variants
    Berecki, G ; Howell, KB ; Heighway, J ; Olivier, N ; Rodda, J ; Overmars, I ; Vlaskamp, DRM ; Ware, TL ; Ardern-Holmes, S ; Lesca, G ; Alber, M ; Veggiotti, P ; Scheffer, IE ; Berkovic, SF ; Wolff, M ; Petrou, S (NATURE PORTFOLIO, 2022-05-30)
    In SCN2A-related disorders, there is an urgent demand to establish efficient methods for determining the gain- (GoF) or loss-of-function (LoF) character of variants, to identify suitable candidates for precision therapies. Here we classify clinical phenotypes of 179 individuals with 38 recurrent SCN2A variants as early-infantile or later-onset epilepsy, or intellectual disability/autism spectrum disorder (ID/ASD) and assess the functional impact of 13 variants using dynamic action potential clamp (DAPC) and voltage clamp. Results show that 36/38 variants are associated with only one phenotypic group (30 early-infantile, 5 later-onset, 1 ID/ASD). Unexpectedly, we revealed major differences in outcome severity between individuals with the same variant for 40% of early-infantile variants studied. DAPC was superior to voltage clamp in predicting the impact of mutations on neuronal excitability and confirmed GoF produces early-infantile phenotypes and LoF later-onset phenotypes. For one early-infantile variant, the co-expression of the α1 and β2 subunits of the Nav1.2 channel was needed to unveil functional impact, confirming the prediction of 3D molecular modeling. Neither DAPC nor voltage clamp reliably predicted phenotypic severity of early-infantile variants. Genotype, phenotypic group and DAPC are accurate predictors of the biophysical impact of SCN2A variants, but other approaches are needed to predict severity.