Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Frequency of CNKSR2 mutation in the X-linked epilepsy-aphasia spectrum
    Damiano, JA ; Burgess, R ; Kivity, S ; Lerman-Sagie, T ; Afawi, Z ; Scheffer, IE ; Berkovic, SF ; Hildebrand, MS (WILEY, 2017-03)
    Synaptic proteins are critical to neuronal function in the brain, and their deficiency can lead to seizures and cognitive impairments. CNKSR2 (connector enhancer of KSR2) is a synaptic protein involved in Ras signaling-mediated neuronal proliferation, migration and differentiation. Mutations in the X-linked gene CNKSR2 have been described in patients with seizures and neurodevelopmental deficits, especially those affecting language. In this study, we sequenced 112 patients with phenotypes within the epilepsy-aphasia spectrum (EAS) to determine the frequency of CNKSR2 mutation within this complex set of disorders. We detected a novel nonsense mutation (c.2314 C>T; p.Arg712*) in one Ashkenazi Jewish family, the male proband of which had a severe epileptic encephalopathy with continuous spike-waves in sleep (ECSWS). His affected brother also had ECSWS with better outcome, whereas the sister had childhood epilepsy with centrotemporal spikes. This mutation segregated in the three affected siblings in an X-linked manner, inherited from their mother who had febrile seizures. Although the frequency of point mutation is low, CNKSR2 sequencing should be considered in families with suspected X-linked EAS because of the specific genetic counseling implications.
  • Item
    Thumbnail Image
    De novo SCN1A pathogenic variants in the GEFS plus spectrum: Not always a familial syndrome
    Myers, KA ; Burgess, R ; Afawi, Z ; Damiano, JA ; Berkovic, SF ; Hildebrand, MS ; Scheffer, IE (WILEY, 2017-02)
    Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by heterogeneous phenotypes ranging from mild disorders such as febrile seizures to epileptic encephalopathies (EEs) such as Dravet syndrome (DS). Although DS often occurs with de novo SCN1A pathogenic variants, milder GEFS+ spectrum phenotypes are associated with inherited pathogenic variants. We identified seven cases with non-EE GEFS+ phenotypes and de novo SCN1A pathogenic variants, including a monozygotic twin pair. Febrile seizures plus (FS+) occurred in six patients, five of whom had additional seizure types. The remaining case had childhood-onset temporal lobe epilepsy without known febrile seizures. Although early development was normal in all individuals, three later had learning difficulties, and the twin girls had language impairment and working memory deficits. All cases had SCN1A missense pathogenic variants that were not found in either parent. One pathogenic variant had been reported previously in a case of DS, and the remainder were novel. Our finding of de novo pathogenic variants in mild phenotypes within the GEFS+ spectrum shows that mild GEFS+ is not always inherited. SCN1A screening should be considered in patients with GEFS+ phenotypes because identification of pathogenic variants will influence antiepileptic therapy, and prognostic and genetic counseling.
  • Item
    Thumbnail Image
    PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy
    Hildebrand, MS ; Tankard, R ; Gazina, EV ; Damiano, JA ; Lawrence, KM ; Dahl, H-HM ; Regan, BM ; Shearer, AE ; Smith, RJH ; Marini, C ; Guerrini, R ; Labate, A ; Gambardella, A ; Tinuper, P ; Lichetta, L ; Baldassari, S ; Bisulli, F ; Pippucci, T ; Scheffer, IE ; Reid, CA ; Petrou, S ; Bahlo, M ; Berkovic, SF (WILEY, 2015-08)
    OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
  • Item
    Thumbnail Image
    Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome
    Hildebrand, MS ; Harvey, AS ; Malone, S ; Damiano, JA ; Do, H ; Ye, Z ; McQuillan, L ; Maixner, W ; Kalnins, R ; Nolan, B ; Wood, M ; Ozturk, E ; Jones, NC ; Gillies, G ; Pope, K ; Lockhart, PJ ; Dobrovic, A ; Leventer, RJ ; Scheffer, IE ; Berkovic, SF (LIPPINCOTT WILLIAMS & WILKINS, 2018-06)
    OBJECTIVE: To determine whether the GNAQ R183Q mutation is present in the forme fruste cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis. METHODS: We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQ mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations. RESULTS: Low levels of the GNAQ mutation were detected in the brain tissue of all 4 cases-ranging from 0.42% to 7.1% frequency-but not in blood-derived DNA. Molecular evaluation confirmed the diagnosis in 1 case in which the radiologic and pathologic data were equivocal. CONCLUSIONS: We detected the mutation at low levels, consistent with mosaicism in the brain or skin (1.0%-18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful where conventional diagnosis is uncertain.
  • Item
    Thumbnail Image
    Development of a rapid functional assay that predicts GLUT1 disease severity
    Zaman, SM ; Mullen, SA ; Petrovski, S ; Maljevic, S ; Gazina, E ; Phillips, AM ; Jones, GD ; Hildebrand, MS ; Damiano, J ; Auvin, S ; Lerche, H ; Weber, YG ; Berkovic, SF ; Scheffer, IE ; Reid, CA ; Petrou, S (LIPPINCOTT WILLIAMS & WILKINS, 2018-12)
    OBJECTIVE: To examine the genotype to phenotype connection in glucose transporter type 1 (GLUT1) deficiency and whether a simple functional assay can predict disease outcome from genetic sequence alone. METHODS: GLUT1 deficiency, due to mutations in SLC2A1, causes a wide range of epilepsies. One possible mechanism for this is variable impact of mutations on GLUT1 function. To test this, we measured glucose transport by GLUT1 variants identified in population controls and patients with mild to severe epilepsies. Controls were reference sequence from the NCBI and 4 population missense variants chosen from public reference control databases. Nine variants associated with epilepsies or movement disorders, with normal intellect in all individuals, formed the mild group. The severe group included 5 missense variants associated with classical GLUT1 encephalopathy. GLUT1 variants were expressed in Xenopus laevis oocytes, and glucose uptake was measured to determine kinetics (Vmax) and affinity (Km). RESULTS: Disease severity inversely correlated with rate of glucose transport between control (Vmax = 28 ± 5), mild (Vmax = 16 ± 3), and severe (Vmax = 3 ± 1) groups, respectively. Affinities of glucose binding in control (Km = 55 ± 18) and mild (Km = 43 ± 10) groups were not significantly different, whereas affinity was indeterminate in the severe group because of low transport rates. Simplified analysis of glucose transport at high concentration (100 mM) was equally effective at separating the groups. CONCLUSIONS: Disease severity can be partly explained by the extent of GLUT1 dysfunction. This simple Xenopus oocyte assay complements genetic and clinical assessments. In prenatal diagnosis, this simple oocyte glucose uptake assay could be useful because standard clinical assessments are not available.
  • Item
    Thumbnail Image
    Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania
    Ware, TL ; Huskins, SR ; Grinton, BE ; Liu, Y-C ; Bennett, MF ; Harvey, M ; McMahon, J ; Andreopoulos-Malikotsinas, D ; Bahlo, M ; Howell, KB ; Hildebrand, MS ; Damiano, JA ; Rosenfeld, A ; Mackay, MT ; Mandelstam, S ; Leventer, RJ ; Harvey, AS ; Freeman, JL ; Scheffer, IE ; Jones, DL ; Berkovic, SF (WILEY, 2019-09)
    We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.
  • Item
    Thumbnail Image
    Does variation in NIPA2 contribute to genetic generalized epilepsy?
    Hildebrand, MS ; Damiano, JA ; Mullen, SA ; Bellows, ST ; Scheffer, IE ; Berkovic, SF (SPRINGER, 2014-05)
  • Item
    No Preview Available
    Glucose metabolism transporters and epilepsy: Only GLUT1 has an established role
    Hildebrand, MS ; Damiano, JA ; Mullen, SA ; Bellows, ST ; Oliver, KL ; Dahl, H-HM ; Scheffer, IE ; Berkovic, SF (WILEY, 2014-02)
    The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy.
  • Item
    No Preview Available
    A targeted resequencing gene panel for focal epilepsy
    Hildebrand, MS ; Myers, CT ; Carvill, GL ; Regan, BM ; Damiano, JA ; Mullen, SA ; Newton, MR ; Nair, U ; Gazina, EV ; Milligan, CJ ; Reid, CA ; Petrou, S ; Scheffer, IE ; Berkovic, SF ; Mefford, HC (LIPPINCOTT WILLIAMS & WILKINS, 2016-04-26)
    OBJECTIVES: We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies. METHODS: The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing. RESULTS: We demonstrated proof of principle that mutations can be detected in 4 previously genotyped focal epilepsy cases. We searched for both germline and somatic mutations in 251 patients with unsolved sporadic or familial focal epilepsy and identified 11 novel or very rare missense variants in 5 different genes: CHRNA4, GRIN2B, KCNT1, PCDH19, and SCN1A. Of these, 2 were predicted to be pathogenic or likely pathogenic, explaining ∼0.8% of the cohort, and 8 were of uncertain significance based on available data. CONCLUSIONS: We have developed and validated a targeted resequencing panel for focal epilepsies, the most important clinical class of epilepsies, accounting for about 60% of all cases. Our application of MIP technology is an innovative approach that will be advantageous in the clinical setting because it is highly sensitive, efficient, and cost-effective for screening large patient cohorts. Our findings indicate that mutations in known genes likely explain only a small proportion of focal epilepsy cases. This is not surprising given the established clinical and genetic heterogeneity of these disorders and underscores the importance of further gene discovery studies in this complex syndrome.
  • Item
    Thumbnail Image
    Loss of synaptic Zn2+ transporter function increases risk of febrile seizures
    Hildebrand, MS ; Phillips, AM ; Mullen, SA ; Adlard, PA ; Hardies, K ; Damiano, JA ; Wimmer, V ; Bellows, ST ; McMahon, JM ; Burgess, R ; Hendrickx, R ; Weckhuysen, S ; Suls, A ; De Jonghe, P ; Scheffer, IE ; Petrou, S ; Berkovic, SF ; Reid, CA (NATURE PORTFOLIO, 2015-12-09)
    Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn(2+)) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn(2+) homeostasis contributes to susceptibility is unknown. Synaptic Zn(2+) is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn(2+) into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn(2+) increases the risk of FS and more broadly support the idea that impaired synaptic Zn(2+) homeostasis can contribute to neuronal hyperexcitability.