Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy
    Howell, KB ; Eggers, S ; Dalziel, K ; Riseley, J ; Mandelstam, S ; Myers, CT ; McMahon, JM ; Schneider, A ; Carvill, GL ; Mefford, HC ; Scheffer, IE ; Harvey, AS (WILEY, 2018-06)
    OBJECTIVE: The severe epilepsies of infancy (SEI) are a devastating group of disorders that pose a major care and economic burden on society; early diagnosis is critical for optimal management. This study sought to determine the incidence and etiologies of SEI, and model the yield and cost-effectiveness of early genetic testing. METHODS: A population-based study was undertaken of the incidence, etiologies, and cost-effectiveness of a whole exome sequencing-based gene panel (targeted WES) in infants with SEI born during 2011-2013, identified through electroencephalography (EEG) and neonatal databases. SEI was defined as seizure onset before age 18 months, frequent seizures, epileptiform EEG, and failure of ≥2 antiepileptic drugs. Medical records, investigations, MRIs, and EEGs were analyzed, and genetic testing was performed if no etiology was identified. Economic modeling was performed to determine yield and cost-effectiveness of investigation of infants with unknown etiology at epilepsy onset, incorporating targeted WES at different stages of the diagnostic pathway. RESULTS: Of 114 infants with SEI (incidence = 54/100 000 live births/y), the etiology was determined in 76 (67%): acquired brain injuries (n = 14), focal cortical dysplasias (n = 14), other brain malformations (n = 17), channelopathies (n = 11), chromosomal (n = 9), metabolic (n = 6), and other genetic (n = 5) disorders. Modeling showed that incorporating targeted WES increased diagnostic yield compared to investigation without targeted WES (48/86 vs 39/86). Early targeted WES had lower total cost ($677 081 U.S. dollars [USD] vs $738 136 USD) than late targeted WES. A pathway with early targeted WES and limited metabolic testing yielded 7 additional diagnoses compared to investigation without targeted WES (46/86 vs 39/86), with lower total cost ($455 597 USD vs $661 103 USD), lower cost per diagnosis ($9904 USD vs $16 951 USD), and a dominant cost-effectiveness ratio. SIGNIFICANCE: Severe epilepsies occur in 1 in 2000 infants, with the etiology identified in two-thirds, most commonly malformative. Early use of targeted WES yields more diagnoses at lower cost. Early genetic diagnosis will enable timely administration of precision medicines, once developed, with the potential to improve long-term outcome.
  • Item
    Thumbnail Image
    The severe epilepsy syndromes of infancy: A population-based study
    Howell, KB ; Freeman, JL ; Mackay, MT ; Fahey, MC ; Archer, J ; Berkovic, SF ; Chan, E ; Dabscheck, G ; Eggers, S ; Hayman, M ; Holberton, J ; Hunt, RW ; Jacobs, SE ; Kornberg, AJ ; Leventer, RJ ; Mandelstam, S ; McMahon, JM ; Mefford, HC ; Panetta, J ; Riseley, J ; Rodriguez-Casero, V ; Ryan, MM ; Schneider, AL ; Smith, LJ ; Stark, Z ; Wong, F ; Yiu, EM ; Scheffer, IE ; Harvey, AS (WILEY, 2021-02)
    OBJECTIVE: To study the epilepsy syndromes among the severe epilepsies of infancy and assess their incidence, etiologies, and outcomes. METHODS: A population-based cohort study was undertaken of severe epilepsies with onset before age 18 months in Victoria, Australia. Two epileptologists reviewed clinical features, seizure videos, and electroencephalograms to diagnose International League Against Epilepsy epilepsy syndromes. Incidence, etiologies, and outcomes at age 2 years were determined. RESULTS: Seventy-three of 114 (64%) infants fulfilled diagnostic criteria for epilepsy syndromes at presentation, and 16 (14%) had "variants" of epilepsy syndromes in which there was one missing or different feature, or where all classical features had not yet emerged. West syndrome (WS) and "WS-like" epilepsy (infantile spasms without hypsarrhythmia or modified hypsarrhythmia) were the most common syndromes, with a combined incidence of 32.7/100 000 live births/year. The incidence of epilepsy of infancy with migrating focal seizures (EIMFS) was 4.5/100 000 and of early infantile epileptic encephalopathy (EIEE) was 3.6/100 000. Structural etiologies were common in "WS-like" epilepsy (100%), unifocal epilepsy (83%), and WS (39%), whereas single gene disorders predominated in EIMFS, EIEE, and Dravet syndrome. Eighteen (16%) infants died before age 2 years. Development was delayed or borderline in 85 of 96 (89%) survivors, being severe-profound in 40 of 96 (42%). All infants with EIEE or EIMFS had severe-profound delay or were deceased, but only 19 of 64 (30%) infants with WS, "WS-like," or "unifocal epilepsy" had severe-profound delay, and only two of 64 (3%) were deceased. SIGNIFICANCE: Three quarters of severe epilepsies of infancy could be assigned an epilepsy syndrome or "variant syndrome" at presentation. In this era of genomic testing and advanced brain imaging, diagnosing epilepsy syndromes at presentation remains clinically useful for guiding etiologic investigation, initial treatment, and prognostication.
  • Item
    Thumbnail Image
    Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain
    Ye, Z ; Chatterton, Z ; Pflueger, J ; Damiano, JA ; McQuillan, L ; Harvey, AS ; Malone, S ; Do, H ; Maixner, W ; Schneider, A ; Nolan, B ; Wood, M ; Lee, WS ; Gillies, G ; Pope, K ; Wilson, M ; Lockhart, PJ ; Dobrovic, A ; Scheffer, IE ; Bahlo, M ; Leventer, RJ ; Lister, R ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2021)
    Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.
  • Item
    Thumbnail Image
    Epileptic spasms are a feature of DEPDC5 mTORopathy
    Carvill, GL ; Crompton, DE ; Regan, BM ; McMahon, JM ; Saykally, J ; Zemel, M ; Schneider, AL ; Dibbens, L ; Howell, KB ; Mandelstam, S ; Leventer, RJ ; Harvey, AS ; Mullen, SA ; Berkovic, SF ; Sullivan, J ; Scheffer, IE ; Mefford, HC (LIPPINCOTT WILLIAMS & WILKINS, 2015-08)
    OBJECTIVE: To assess the presence of DEPDC5 mutations in a cohort of patients with epileptic spasms. METHODS: We performed DEPDC5 resequencing in 130 patients with spasms, segregation analysis of variants of interest, and detailed clinical assessment of patients with possibly and likely pathogenic variants. RESULTS: We identified 3 patients with variants in DEPDC5 in the cohort of 130 patients with spasms. We also describe 3 additional patients with DEPDC5 alterations and epileptic spasms: 2 from a previously described family and a third ascertained by clinical testing. Overall, we describe 6 patients from 5 families with spasms and DEPDC5 variants; 2 arose de novo and 3 were familial. Two individuals had focal cortical dysplasia. Clinical outcome was highly variable. CONCLUSIONS: While recent molecular findings in epileptic spasms emphasize the contribution of de novo mutations, we highlight the relevance of inherited mutations in the setting of a family history of focal epilepsies. We also illustrate the utility of clinical diagnostic testing and detailed phenotypic evaluation in characterizing the constellation of phenotypes associated with DEPDC5 alterations. We expand this phenotypic spectrum to include epileptic spasms, aligning DEPDC5 epilepsies more with the recognized features of other mTORopathies.