Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    New Genes for Focal Epilepsies with Speech and Language Disorders (vol 15, pg 35, 2015)
    Turner, SJ ; Morgan, AT ; Perez, ER ; Scheffer, IE (SPRINGER, 2015-08)
  • Item
    No Preview Available
    Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation
    Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Van Reyk, O ; Coleman, M ; Braden, RO ; Turner, S ; Rigbye, KA ; Boys, A ; Barton, S ; Webster, R ; Fahey, M ; Saunders, K ; Parry-Fielder, B ; Paxton, G ; Hayman, M ; Coman, D ; Goel, H ; Baxter, A ; Ma, A ; Davis, N ; Reilly, S ; Delatycki, M ; Liegeois, FJ ; Connelly, A ; Gecz, J ; Fisher, SE ; Amor, DJ ; Scheffer, IE ; Bahlo, M ; Morgan, AT (LIPPINCOTT WILLIAMS & WILKINS, 2020-05-19)
    OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.
  • Item
    Thumbnail Image
    Early neuroimaging markers of FOXP2 intragenic deletion
    Liegeois, FJ ; Hildebrand, MS ; Bonthrone, A ; Turner, SJ ; Scheffer, IE ; Bahlo, M ; Connelly, A ; Morgan, AT (NATURE PORTFOLIO, 2016-10-13)
    FOXP2 is the major gene associated with severe, persistent, developmental speech and language disorders. While studies in the original family in which a FOXP2 mutation was found showed volume reduction and reduced activation in core language and speech networks, there have been no imaging studies of different FOXP2 mutations. We conducted a multimodal MRI study in an eight-year-old boy (A-II) with a de novo FOXP2 intragenic deletion. A-II showed marked bilateral volume reductions in the hippocampus, thalamus, globus pallidus, and caudate nucleus compared with 26 control males (effect sizes from -1 to -3). He showed no detectable functional MRI activity when repeating nonsense words. The hippocampus is implicated for the first time in FOXP2 diseases. We conclude that FOXP2 anomaly is either directly or indirectly associated with atypical development of widespread subcortical networks early in life.
  • Item
    No Preview Available
    GRIN2A mutations cause epilepsy-aphasia spectrum disorders
    Carvill, GL ; Regan, BM ; Yendle, SC ; O'Roak, BJ ; Lozovaya, N ; Bruneau, N ; Burnashev, N ; Khan, A ; Cook, J ; Geraghty, E ; Sadleir, LG ; Turner, SJ ; Tsai, M-H ; Webster, R ; Ouvrier, R ; Damiano, JA ; Berkovic, SF ; Shendure, J ; Hildebrand, MS ; Szepetowski, P ; Scheffer, IE ; Mefford, HC (NATURE PUBLISHING GROUP, 2013-09)
    Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate the pathogenic role of GRIN2A in 519 probands with epileptic encephalopathies with diverse epilepsy syndromes. We identified four probands with GRIN2A variants that segregated with the disorder in their families. Notably, all four families presented with EAS, accounting for 9% of epilepsy-aphasia cases. We did not detect pathogenic variants in GRIN2A in other epileptic encephalopathies (n = 475) nor in probands with benign childhood epilepsy with centrotemporal spikes (n = 81). We report the first monogenic cause, to our knowledge, for EAS. GRIN2A mutations are restricted to this group of cases, which has important ramifications for diagnostic testing and treatment and provides new insights into the pathogenesis of this debilitating group of conditions.
  • Item
    No Preview Available
    Clinical genetic study of the epilepsy-aphasia spectrum
    Tsai, M-H ; Vears, DF ; Turner, SJ ; Smith, RL ; Berkovic, SF ; Sadleir, LG ; Scheffer, IE (WILEY-BLACKWELL, 2013-02)
    PURPOSE: To characterize the frequency and nature of the family history of seizures in probands with epilepsy falling within the epilepsy-aphasia spectrum (EAS) in order to understand the genetic architecture of this group of disorders. METHODS: Patients with epileptic encephalopathy with continuous spike-and-wave during sleep (ECSWS), Landau-Kleffner syndrome (LKS), atypical benign partial epilepsy (ABPE), and intermediate epilepsy-aphasia disorders (IEAD) were recruited. All affected and available unaffected relatives up to three degrees of relatedness underwent phenotyping using a validated seizure questionnaire. Pedigrees were constructed for all families. The proportion of affected relatives according to each degree of relatedness was calculated. The epilepsy phenotypes in close relatives were analyzed. The data were compared to the families of probands with benign childhood epilepsy with centrotemporal spikes (BECTS) using the same methodology. KEY FINDINGS: Thirty-one probands, including five ECSWS, three LKS, one ABPE, and 22 IEAD were recruited. The mean age of seizure onset was 3.9 (range 0.5-7) years. A male predominance was seen (68%, 21/31) . Sixteen (51.6%) of 31 had a positive family history of seizures. Among 1,254 relatives, 30 (2.4%) had a history of seizures: 13 (10.2%) of 128 first-degree relatives, 5 (1.7%) of 291 second-degree relatives, and 12 (1.4%) of 835 third-degree relatives. Thirteen had febrile seizures, including two who had both febrile seizures and epilepsy. Of the 19 relatives with epilepsy, 4 had BECTS, 4 epilepsies with focal seizures of unknown cause, 3 IEAD, and 7 unclassified. One had genetic generalized epilepsy. In the families of the BECTS probands, 9.8% of first-degree, 3% of second-degree, and 1.5% of third-degree relatives had seizures, which was not significantly different from the EAS cohort families. SIGNIFICANCE: The frequencies of seizures in relatives of probands with EAS suggest that the underlying genetic influence of EAS is consistent with complex inheritance and similar to BECTS. The phenotypic pattern observed in the affected relatives comprised predominantly febrile seizures and focal seizures. These findings suggest that a shared genetic predisposition to focal epilepsies underpins the epilepsy-aphasia spectrum.