Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide
    Cebon, J (NATURE PUBLISHING GROUP, 2006-10-09)
    Octreotide may extend survival in hepatocellular carcinoma (HCC). Forty-one per cent of HCCs have high-affinity somatostatin receptors. We aimed to determine the feasibility, safety, and activity of long-acting octreotide in advanced HCC; to identify the best method for assessing somatostatin receptor expression; to relate receptor expression to clinical outcomes; and to evaluate toxicity. Sixty-three patients with advanced HCC received intramuscular long-acting octreotide 20 mg monthly until progression or toxicity. Median age was 67 years (range 28-81 years), male 81%, Child-Pugh A 83%, and B 17%. The aetiologies of chronic liver disease were alcohol (22%), viral hepatitis (44%), and haemochromatosis (6%). Prior treatments for HCC included surgery (8%), chemotherapy (2%), local ablation (11%), and chemoembolisation (6%). One patient had an objective partial tumour response (2%, 95% CI 0-9%). Serum alpha-fetoprotein levels decreased more than 50% in four (6%). Median survival was 8 months. Thirty four of 61 patients (56%) had receptor expression detected by scintigraphy; no clear relationship with clinical outcomes was identified. There were few grade 3 or 4 toxicities: hyperglycaemia (8%), hypoglycaemia (2%), diarrhoea (5%), and anorexia (2%). Patients reported improvements in some symptoms, but no major changes in quality of life were detected. Long-acting octreotide is safe in advanced HCC. We found little evidence of anticancer activity. A definitive randomised trial would identify whether patients benefit from this treatment in other ways.
  • Item
    Thumbnail Image
    Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumours expressing de2-7 EGFR or amplified EGFR
    Panousis, C ; Rayzman, VM ; Johns, TG ; Renner, C ; Liu, Z ; Cartwright, G ; Lee, FT ; Wang, D ; Gan, H ; Cao, D ; Kypridis, A ; Smyth, FE ; Brechbiel, MW ; Burgess, AW ; Old, LJ ; Scott, AM (NATURE PUBLISHING GROUP, 2005-03-28)
    We report the generation of a chimeric monoclonal antibody (ch806) with specificity for an epitope on the epidermal growth factor receptor (EGFR) that is different from that targeted by all other anti-EGFR therapies. Ch806 antibody is reactive to both de2-7 and overexpressed wild-type (wt) EGFR but not native EGFR expressed in normal tissues at physiological levels. Ch806 was stably expressed in CHO (DHFR -/-) cells and purified for subsequent characterisation and validated for use in preliminary immunotherapy investigations. Ch806 retained the antigen binding specificity and affinity of the murine parental antibody. Furthermore, ch806 displayed enhanced antibody-dependent cellular cytotoxicity against target cells expressing the 806 antigen in the presence of human effector cells. Ch806 was successfully radiolabelled with both iodine-125 and indium-111 without loss of antigen binding affinity or specificity. The radioimmunoconjugates were stable in the presence of human serum at 37 degrees C for up to 9 days and displayed a terminal half-life (T(1/2beta)) of approximately 78 h in nude mice. Biodistribution studies undertaken in BALB/c nude mice bearing de2-7 EGFR-expressing or amplified EGFR-expressing xenografts revealed that (125)I-labelled ch806 failed to display any significant tumour retention. However, specific and prolonged tumour localisation of (111)In-labelled ch806 was demonstrated with uptake of 31%ID g(-1) and a tumour to blood ratio of 5 : 1 observed at 7 days postinjection. In vivo therapy studies with ch806 demonstrated significant antitumour effects on established de2-7 EGFR xenografts in BALB/c nude mice compared to control, and both murine 806 and the anti-EGFR 528 antibodies. These results support a potential therapeutic role of ch806 in the treatment of suitable EGFR-expressing tumours, and warrants further investigation of the potential of ch806 as a therapeutic agent.
  • Item
    Thumbnail Image
    A Possible Role for Metallic Ions in the Carbohydrate Cluster Recognition Displayed by a Lewis Y Specific Antibody
    Farrugia, W ; Scott, AM ; Ramsland, PA ; Kobe, B (PUBLIC LIBRARY SCIENCE, 2009-11-10)
    BACKGROUND: Lewis Y (Le(y)) is a blood group-related carbohydrate that is expressed at high surface densities on the majority of epithelial carcinomas and is a promising target for antibody-based immunotherapy. A humanized Le(y)-specific antibody (hu3S193) has shown encouraging safety, pharmacokinetic and tumor-targeting properties in recently completed Phase I clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: We report the three-dimensional structures for both the free (unliganded) and bound (Le(y) tetrasaccharide) hu3S193 Fab from the same crystal grown in the presence of divalent zinc ions. There is no evidence of significant conformational changes occurring in either the Le(y) carbohydrate antigen or the hu3S193 binding site, which suggests a rigid fit binding mechanism. In the crystal, the hu3S193 Fab molecules are coordinated at their protein-protein interface by two zinc ions and in solution aggregation of Fab can be initiated by zinc, but not magnesium ions. Dynamic light scattering revealed that zinc ions could initiate a sharp transition from hu3S193 Fab monomers to large multimeric aggregates in solution. CONCLUSIONS/SIGNIFICANCE: Zinc ions can mediate interactions between hu3S193 Fab in crystals and in solution. Whether metallic ion mediated aggregation of antibody occurs in vivo is not known, but the present results suggest that similar clustering mechanisms could occur when hu3S193 binds to Le(y) on cells, particularly given the high surface densities of antigen on the target tumor cells.
  • Item
    Thumbnail Image
    The Plasticity of Oncogene Addiction: Implications for Targeted Therapies Directed to Receptor Tyrosine Kinases
    Pillay, V ; Allaf, L ; Wilding, AL ; Donoghue, JF ; Court, NW ; Greenall, S ; Scott, AM ; Johns, TG (ELSEVIER SCIENCE INC, 2009-05)
    A common mutation of the epidermal growth factor receptor (EGFR) in glioblastoma multiforme (GBM) is an extracellular truncation known as the de2-7 EGFR (or EGFRvIII). Hepatocyte growth factor (HGF) is the ligand for the receptor tyrosine kinase (RTK) c-Met, and this signaling axis is often active in GBM. The expression of the HGF/c-Met axis or de2-7 EGFR independently enhances GBM growth and invasiveness, particularly through the phosphatidylinositol-3 kinase/pAkt pathway. Using RTK arrays, we show that expression of de2-7 EGFR in U87MG GBM cells leads to the coactivation of several RTKs, including platelet-derived growth factor receptor beta and c-Met. A neutralizing antibody to HGF (AMG102) did not inhibit de2-7 EGFR-mediated activation of c-Met, demonstrating that it is ligand-independent. Therapy for parental U87MG xenografts with AMG 102 resulted in significant inhibition of tumor growth, whereas U87MG.Delta 2-7 xenografts were profoundly resistant. Treatment of U87MG.Delta 2-7 xenografts with panitumumab, an anti-EGFR antibody, only partially inhibited tumor growth as xenografts rapidly reverted to the HGF/c-Met signaling pathway. Cotreatment with panitumumab and AMG 102 prevented this escape leading to significant tumor inhibition through an apoptotic mechanism, consistent with the induction of oncogenic shock. This observation provides a rationale for using panitumumab and AMG 102 in combination for the treatment of GBM patients. These results illustrate that GBM cells can rapidly change the RTK driving their oncogene addiction if the alternate RTK signals through the same downstream pathway. Consequently, inhibition of a dominant oncogene by targeted therapy can alter the hierarchy of RTKs resulting in rapid therapeutic resistance.
  • Item
    No Preview Available
    Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-κB and initiates tumour vascular normalization
    Gan, HK ; Lappas, M ; Cao, DX ; Cvrljevdic, A ; Scott, AM ; Johns, TG (WILEY, 2009-09)
    Monoclonal antibodies (mAbs) and tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR), which is often pathogenetically overexpressed or mutated in epithelial malignancies and glioma, have been modestly successful, with some approved for human use. MAb 806 was raised against de2-7EGFR (or EGFRvIII), a constitutively active mutation expressed in gliomas, but also recognizes a subset (<10%) of wild-type (wt) EGFR when it is activated by autocrine loop, overexpression or mutation. It does not bind inactive EGFR in normal tissues like liver. Glioma xenografts expressing the de2-7EGFR treated with mAb 806 show reduced receptor autophosphorylation, increased p27(KIP1) and reduced cell proliferation. Xenografts expressing the wtEGFR activated by overexpression or autocrine ligand are also inhibited by mAb 806, but the mechanism of inhibition has been difficult to elucidate, especially because mAb 806 does not prevent wtEGFR phosphorylation or downstream signalling in vitro. Thus, we examined the effects of mAb 806 on A431 xenograft angiogenesis. MAb 806 increases vascular endothelial growth factor (VEGF) and interleukin-8 production by activating NF-kappaB and normalizes tumour vasculature. Pharmacological inhibition of NF-kappaB completely abrogated mAb 806 activity, demonstrating that NF-kappaB activation is necessary for its anti-tumour function in xenografts. Given the increase in VEGF, we combined mAb 806 with bevacizumab in vivo, resulting in additive activity.
  • Item
    Thumbnail Image
    Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells
    Cortez, C ; Tomaskovic-Crook, E ; Johnston, APR ; Scott, AM ; Nice, EC ; Heath, JK ; Caruso, F (AMER CHEMICAL SOC, 2007-09)
    There has been increased interest in the use of polymer capsules formed by the layer-by-layer (LbL) technique as therapeutic carriers to cancer cells due to their versatility and ease of surface modification. We have investigated the influence of size, surface properties, cell line, and kinetic parameters such as dosage (particle concentration) and incubation time on the specific binding of humanized A33 monoclonal antibody (huA33 mAb)-coated LbL particles and capsules to colorectal cancer cells. HuA33 mAb binds to the A33 antigen present on almost all colorectal cancer cells and has demonstrated great promise in clinical trials as an immunotherapeutic agent for cancer therapy. Flow cytometry experiments showed the cell binding specificity of huA33 mAb-coated particles to be size-dependent, with the optimal size for enhanced selectivity at approximately 500 nm. The specific binding was improved by increasing the dosage of particles incubated with the cells. The level of specific versus nonspecific binding was compared for particles terminated with various polyelectrolytes to examine the surface dependency of antibody attachment and subsequent cell binding ability. The specific binding of huA33 mAb-coated particles is also reported for two colorectal cancer cell lines, with an enhanced binding ratio between 4 and 10 obtained for the huA33 mAb-functionalized particles. This investigation aims to improve the level of specific targeting of LbL particles, which is important in targeted drug and gene delivery applications.