Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    Hyperlactatemia in critical illness and cardiac surgery
    O'Connor, ED ; Fraser, JF (BIOMED CENTRAL LTD, 2010)
  • Item
    No Preview Available
    Critical care services and the H1N1 (2009) influenza epidemic in Australia and New Zealand in 2010: the impact of the second winter epidemic
    Webb, SAR ; Aubron, C ; Bailey, M ; Bellomo, R ; Howe, B ; McArthur, C ; Morrison, S ; Seppelt, I (BMC, 2011)
    INTRODUCTION: During the first winter of exposure, the H1N1 2009 influenza virus placed considerable strain on intensive care unit (ICU) services in Australia and New Zealand (ANZ). We assessed the impact of the H1N1 2009 influenza virus on ICU services during the second (2010) winter, following the implementation of vaccination. METHODS: A prospective, cohort study was conducted in all ANZ ICUs during the southern hemisphere winter of 2010. Data on demographic and clinical characteristics, including vaccination status and outcomes, were collected. The characteristics of patients admitted during the 2010 and 2009 seasons were compared. RESULTS: From 1 June to 15 October 2010, there were 315 patients with confirmed influenza A, of whom 283 patients (90%) had H1N1 2009 (10.6 cases per million inhabitants; 95% confidence interval (CI), 9.4 to 11.9) which was an observed incidence of 33% of that in 2009 (P < 0.001). The maximum daily ICU occupancy was 2.4 beds (95% CI, 1.8 to 3) per million inhabitants in 2010 compared with 7.5 (95% CI, 6.5 to 8.6) in 2009, (P < 0.001). The onset of the epidemic in 2010 was delayed by five weeks compared with 2009. The clinical characteristics were similar in 2010 and 2009 with no difference in the age distribution, proportion of patients treated with mechanical ventilation, duration of ICU admission, or hospital mortality. Unlike 2009 the incidence of critical illness was significantly greater in New Zealand (18.8 cases per million inhabitants compared with 9 in Australia, P < 0.001). Of 170 patients with known vaccination status, 26 (15.3%) had been vaccinated against H1N1 2009. CONCLUSIONS: During the 2010 ANZ winter, the impact of H1N1 2009 on ICU services was still appreciable in Australia and substantial in New Zealand. Vaccination failure occurred.
  • Item
    No Preview Available
    Prospective meta-analysis using individual patient data in intensive care medicine
    Reade, MC ; Delaney, A ; Bailey, MJ ; Harrison, DA ; Yealy, DM ; Jones, PG ; Rowan, KM ; Bellomo, R ; Angus, DC (SPRINGER, 2010-01)
    Meta-analysis is a technique for combining evidence from multiple trials. However, meta-analyses of studies with substantial heterogeneity among patients within trials-common in intensive care-can lead to incorrect conclusions if performed using aggregate data. Use of individual patient data (IPD) can avoid this concern, increase the power of a meta-analysis, and is useful for exploring subgroup effects. Barriers exist to IPD meta-analysis, most of which are overcome if clinical trials are designed to prospectively facilitate the incorporation of their results with other trials. We review the features of prospective IPD meta-analysis and identify those of relevance to intensive care research. We identify three clinical questions, which are the subject of recent or planned randomised controlled trials where IPD MA offers advantages over approaches using aggregate data.
  • Item
    Thumbnail Image
    The microbiological and clinical outcome of guide wire exchanged versus newly inserted antimicrobial surface treated central venous catheters
    Parbat, N ; Sherry, N ; Bellomo, R ; Schneider, AG ; Glassford, NJ ; Johnson, PDR ; Bailey, M (BIOMED CENTRAL LTD, 2013)
    INTRODUCTION: The management of suspected central venous catheter (CVC)-related sepsis by guide wire exchange (GWX) is not recommended. However, GWX for new antimicrobial surface treated (AST) triple lumen CVCs has never been studied. We aimed to compare the microbiological outcome of triple lumen AST CVCs inserted by GWX (GWX-CVCs) with newly inserted triple lumen AST CVCs (NI-CVCs). METHODS: We studied a cohort of 145 consecutive patients with GWX-CVCs and contemporaneous site-matched control cohort of 163 patients with NI-CVCs in a tertiary intensive care unit (ICU). RESULTS: GWX-CVC and NI-CVC patients were similar for mean age (58.7 vs. 62.2 years), gender (88 (60.7%) vs. 98 (60.5%) male) and illness severity on admission (mean Acute Physiology and Chronic Health Evaluation (APACHE) III: 71.3 vs. 72.2). However, GWX patients had longer median ICU lengths of stay (12.2 vs. 4.4 days; P < 0.001) and median hospital lengths of stay (30.7 vs. 18.0 days; P < 0.001). There was no significant difference with regard to the number of CVC tips with bacterial or fungal pathogen colonization among GWX-CVCs vs. NI-CVCs (5 (2.5%) vs. 6 (7.4%); P = 0.90). Catheter-associated blood stream infection (CA-BSI) occurred in 2 (1.4%) GWX patients compared with 3 (1.8%) NI-CVC patients (P = 0.75). There was no significant difference in hospital mortality (35 (24.1%) vs. 48 (29.4%); P = 0.29). CONCLUSIONS: GWX-CVCs and NI-CVCs had similar rates of tip colonization at removal, CA-BSI and mortality. If the CVC removed by GWX is colonized, a new CVC must then be inserted at another site. In selected ICU patients at higher central vein puncture risk receiving AST CVCs GWX may be an acceptable initial approach to line insertion.
  • Item
    Thumbnail Image
    Glycaemic control in Australia and New Zealand before and after the NICE-SUGAR trial: a translational study
    Kaukonen, K-M ; Bailey, M ; Pilcher, D ; Orford, N ; Finfer, S ; Bellomo, R (BMC, 2013)
    INTRODUCTION: There is no information on the uptake of Intensive Insulin Therapy (IIT) before the Normoglycemia in Intensive Care Evaluation and Surviving Using Glucose Algorithm Regulation (NICE-SUGAR) trial in Australia and New Zealand (ANZ) and on the bi-national response to the trial, yet such data would provide important information on the evolution of ANZ practice in this field. We aimed to study ANZ glycaemic control before and after the publication of the results of the NICE-SUGAR trial. METHODS: We analysed glucose control in critically ill patients across Australia and New Zealand during a two-year period before and after the publication of the NICE-SUGAR study. We used the mean first day glucose (Glu1) (a validated surrogate of ICU glucose control) to define practice. The implementation of an IIT protocol was presumed if the median of Glu₁ measurements was <6.44 mmol/L for a given ICU. Hypoglycaemia was categorised as severe (glucose ≤2.2 mmol/L) or moderate (glucose ≤3.9 mmol/L). RESULTS: We studied 49 ICUs and 176,505 patients. No ICU practiced IIT before or after NICE-SUGAR. Overall, Glu1 increased from 7.96 (2.95) mmol/L to 8.03 (2.92) mmol/L (P <0.0001) after NICE-SUGAR. Similar increases were noted in all patient subgroups studied (surgical, medical, insulin dependent diabetes mellitus, ICU stay >48/<48 hours). The rate of severe and moderate hypoglycaemia before and after NICE-SUGAR study were 0.59% vs. 0.55% (P =0.33) and 6.62% vs. 5.68% (P <0.0001), respectively. Both crude and adjusted mortalities declined over the study period. CONCLUSIONS: IIT had not been adopted in ANZ before the NICE-SUGAR study and glycaemic control corresponded to that delivered in the control arm of NICE-SUGAR trial. There were only minor changes in practice after the trial toward looser glycaemic control. The rate of moderate hypoglycaemia and mortality decreased along with such changes.
  • Item
    Thumbnail Image
    Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality
    Prowle, JR ; Echeverri, JE ; Ligabo, EV ; Sherry, N ; Taori, GC ; Crozier, TM ; Hart, GK ; Korman, TM ; Mayall, BC ; Johnson, PDR ; Bellomo, R (BMC, 2011)
    INTRODUCTION: To estimate the incidence of intensive care unit (ICU)-acquired bloodstream infection (BSI) and its independent effect on hospital mortality. METHODS: We retrospectively studied acquisition of BSI during admissions of >72 hours to adult ICUs from two university-affiliated hospitals. We obtained demographics, illness severity and co-morbidity data from ICU databases and microbiological diagnoses from departmental electronic records. We assessed survival at hospital discharge or at 90 days if still hospitalized. RESULTS: We identified 6339 ICU admissions, 330 of which were complicated by BSI (5.2%). Median time to first positive culture was 7 days (IQR 5-12). Overall mortality was 23.5%, 41.2% in patients with BSI and 22.5% in those without. Patients who developed BSI had higher illness severity at ICU admission (median APACHE III score: 79 vs. 68, P < 0.001). After controlling for illness severity and baseline demographics by Cox proportional-hazard model, BSI remained independently associated with risk of death (hazard ratio from diagnosis 2.89; 95% confidence interval 2.41-3.46; P < 0.001). However, only 5% of the deaths in this model could be attributed to acquired-BSI, equivalent to an absolute decrease in survival of 1% of the total population. When analyzed by microbiological classification, Candida, Staphylococcus aureus and gram-negative bacilli infections were independently associated with increased risk of death. In a sub-group analysis intravascular catheter associated BSI remained associated with significant risk of death (hazard ratio 2.64; 95% confidence interval 1.44-4.83; P = 0.002). CONCLUSIONS: ICU-acquired BSI is associated with greater in-hospital mortality, but complicates only 5% of ICU admissions and its absolute effect on population mortality is limited. These findings have implications for the design and interpretation of clinical trials.
  • Item
    Thumbnail Image
    Dynamic lactate indices as predictors of outcome in critically ill patients
    Nichol, A ; Bailey, M ; Egi, M ; Pettila, V ; French, C ; Stachowski, E ; Reade, MC ; Cooper, DJ ; Bellomo, R (BMC, 2011)
    INTRODUCTION: Dynamic changes in lactate concentrations in the critically ill may predict patient outcome more accurately than static indices. We aimed to compare the predictive value of dynamic indices of lactatemia in the first 24 hours of intensive care unit (ICU) admission with the value of more commonly used static indices. METHODS: This was a retrospective observational study of a prospectively obtained intensive care database of 5,041 consecutive critically ill patients from four Australian university hospitals. We assessed the relationship between dynamic lactate values collected in the first 24 hours of ICU admission and both ICU and hospital mortality. RESULTS: We obtained 36,673 lactate measurements in 5,041 patients in the first 24 hours of ICU admission. Both the time weighted average lactate (LACTW₂₄) and the change in lactate (LACΔ₂₄) over the first 24 hours were independently predictive of hospital mortality with both relationships appearing to be linear in nature. For every one unit increase in LACTW₂₄ and LACΔ₂₄ the risk of hospital death increased by 37% (OR 1.37, 1.29 to 1.45; P < 0.0001) and by 15% (OR 1.15, 1.10 to 1.20; P < 0.0001) respectively. Such dynamic indices, when combined with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, improved overall outcome prediction (P < 0.0001) achieving almost 90% accuracy. When all lactate measures in the first 24 hours were considered, the combination of LACTW₂₄ and LACΔ₂₄ significantly outperformed (P < 0.0001) static indices of lactate concentration, such as admission lactate, maximum lactate and minimum lactate. CONCLUSIONS: In the first 24 hours following ICU admission, dynamic indices of hyperlactatemia have significant independent predictive value, improve the performance of illness severity score-based outcome predictions and are superior to simple static indices of lactate concentration.
  • Item
    Thumbnail Image
    Age of red blood cells and mortality in the critically ill
    Pettilae, V ; Westbrook, AJ ; Nichol, AD ; Bailey, MJ ; Wood, EM ; Syres, G ; Phillips, LE ; Street, A ; French, C ; Murray, L ; Orford, N ; Santamaria, JD ; Bellomo, R ; Cooper, DJ (BMC, 2011)
    INTRODUCTION: In critically ill patients, it is uncertain whether exposure to older red blood cells (RBCs) may contribute to mortality. We therefore aimed to evaluate the association between the age of RBCs and outcome in a large unselected cohort of critically ill patients in Australia and New Zealand. We hypothesized that exposure to even a single unit of older RBCs may be associated with an increased risk of death. METHODS: We conducted a prospective, multicenter observational study in 47 ICUs during a 5-week period between August 2008 and September 2008. We included 757 critically ill adult patients receiving at least one unit of RBCs. To test our hypothesis we compared hospital mortality according to quartiles of exposure to maximum age of RBCs without and with adjustment for possible confounding factors. RESULTS: Compared with other quartiles (mean maximum red cell age 22.7 days; mortality 121/568 (21.3%)), patients treated with exposure to the lowest quartile of oldest RBCs (mean maximum red cell age 7.7 days; hospital mortality 25/189 (13.2%)) had an unadjusted absolute risk reduction in hospital mortality of 8.1% (95% confidence interval = 2.2 to 14.0%). After adjustment for Acute Physiology and Chronic Health Evaluation III score, other blood component transfusions, number of RBC transfusions, pretransfusion hemoglobin concentration, and cardiac surgery, the odds ratio for hospital mortality for patients exposed to the older three quartiles compared with the lowest quartile was 2.01 (95% confidence interval = 1.07 to 3.77). CONCLUSIONS: In critically ill patients, in Australia and New Zealand, exposure to older RBCs is independently associated with an increased risk of death.
  • Item
    Thumbnail Image
    Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest
    Bellomo, R ; Bailey, M ; Eastwood, GM ; Nichol, A ; Pilcher, D ; Hart, GK ; Reade, MC ; Egi, M ; Cooper, DJ (BIOMED CENTRAL LTD, 2011)
    INTRODUCTION: Hyperoxia has recently been reported as an independent risk factor for mortality in patients resuscitated from cardiac arrest. We examined the independent relationship between hyperoxia and outcomes in such patients. METHODS: We divided patients resuscitated from nontraumatic cardiac arrest from 125 intensive care units (ICUs) into three groups according to worst PaO2 level or alveolar-arterial O2 gradient in the first 24 hours after admission. We defined 'hyperoxia' as PaO2 of 300 mmHg or greater, 'hypoxia/poor O2 transfer' as either PaO2 < 60 mmHg or ratio of PaO2 to fraction of inspired oxygen (FiO2 ) < 300, 'normoxia' as any value between hypoxia and hyperoxia and 'isolated hypoxemia' as PaO2 < 60 mmHg regardless of FiO2. Mortality at hospital discharge was the main outcome measure. RESULTS: Of 12,108 total patients, 1,285 (10.6%) had hyperoxia, 8,904 (73.5%) had hypoxia/poor O2 transfer, 1,919 (15.9%) had normoxia and 1,168 (9.7%) had isolated hypoxemia (PaO2 < 60 mmHg). The hyperoxia group had higher mortality (754 (59%) of 1,285 patients; 95% confidence interval (95% CI), 56% to 61%) than the normoxia group (911 (47%) of 1,919 patients; 95% CI, 45% to 50%) with a proportional difference of 11% (95% CI, 8% to 15%), but not higher than the hypoxia group (5,303 (60%) of 8,904 patients; 95% CI, 59% to 61%). In a multivariable model controlling for some potential confounders, including illness severity, hyperoxia had an odds ratio for hospital death of 1.2 (95% CI, 1.1 to 1.6). However, once we applied Cox proportional hazards modelling of survival, sensitivity analyses using deciles of hypoxemia, time period matching and hyperoxia defined as PaO2 > 400 mmHg, hyperoxia had no independent association with mortality. Importantly, after adjustment for FiO2 and the relevant covariates, PaO2 was no longer predictive of hospital mortality (P = 0.21). CONCLUSIONS: Among patients admitted to the ICU after cardiac arrest, hyperoxia did not have a robust or consistently reproducible association with mortality. We urge caution in implementing policies of deliberate decreases in FiO2 in these patients.
  • Item
    Thumbnail Image
    Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study
    Schneider, AG ; Goodwin, MD ; Schelleman, A ; Bailey, M ; Johnson, L ; Bellomo, R (BMC, 2014)
    INTRODUCTION: We used contrast-enhanced ultrasound (CEUS) to estimate the effect of an increase in mean arterial pressure (MAP) induced by noradrenaline infusion on renal microvascular cortical perfusion in critically ill patients. METHODS: Twelve patients requiring a noradrenaline infusion to maintain a MAP more than 60 mmHg within 48 hours of intensive care unit admission were included in the study. Renal CEUS scans with destruction-replenishment sequences and Sonovue® (Bracco, Milano Italy) as a contrast agent, were performed at baseline (MAP 60 to 65 mmHg) and after a noradrenaline-induced increase in MAP to 80 to 85 mmHg. RESULTS: There was no adverse effect associated with ultrasound contrast agent administration or increase in noradrenaline infusion rate. Adequate images were obtained in all patients at all study times. To reach the higher MAP target, median noradrenaline infusion rate was increased from 10 to 14 μg/min. Noradrenaline-induced increases in MAP were not associated with a significant change in overall CEUS derived mean perfusion indices (median perfusion index 3056 (interquartile range: 2438 to 6771) arbitrary units (a.u.) at baseline versus 4101 (3067 to 5981) a.u. after MAP increase, P = 0.38). At individual level, however, we observed important heterogeneity in responses (range -51% to +97% changes from baseline). CONCLUSIONS: A noradrenaline-induced increase in MAP was not associated with an overall increase in renal cortical perfusion as estimated by CEUS. However, at individual level, such response was heterogeneous and unpredictable suggesting great variability in pressure responsiveness within a cohort with a similar clinical phenotype.