Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy
    Hildebrand, MS ; Tankard, R ; Gazina, EV ; Damiano, JA ; Lawrence, KM ; Dahl, H-HM ; Regan, BM ; Shearer, AE ; Smith, RJH ; Marini, C ; Guerrini, R ; Labate, A ; Gambardella, A ; Tinuper, P ; Lichetta, L ; Baldassari, S ; Bisulli, F ; Pippucci, T ; Scheffer, IE ; Reid, CA ; Petrou, S ; Bahlo, M ; Berkovic, SF (WILEY, 2015-08)
    OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
  • Item
    No Preview Available
    Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis
    Smith, KR ; Dahl, H-HM ; Canafoglia, L ; Andermann, E ; Damiano, J ; Morbin, M ; Bruni, AC ; Giaccone, G ; Cossette, P ; Saftig, P ; Groetzinger, J ; Schwake, M ; Andermann, F ; Staropoli, JF ; Sims, KB ; Mole, SE ; Franceschetti, S ; Alexander, NA ; Cooper, JD ; Chapman, HA ; Carpenter, S ; Berkovic, SF ; Bahlo, M (OXFORD UNIV PRESS, 2013-04-01)
    Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.
  • Item
    No Preview Available
    Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage
    Smith, KR ; Damiano, J ; Franceschetti, S ; Carpenter, S ; Canafoglia, L ; Morbin, M ; Rossi, G ; Pareyson, D ; Mole, SE ; Staropoli, JF ; Sims, KB ; Lewis, J ; Lin, W-L ; Dickson, DW ; Dahl, H-H ; Bahlo, M ; Berkovic, SF (CELL PRESS, 2012-06-08)
    We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.