Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 71
  • Item
    Thumbnail Image
    Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
    Watson, AMD ; Gray, SP ; Jiaze, L ; Soro-Paavonen, A ; Wong, B ; Cooper, ME ; Bierhaus, A ; Pickering, R ; Tikellis, C ; Tsorotes, D ; Thomas, MC ; Jandeleit-Dahm, KAM (AMER DIABETES ASSOC, 2012-08)
    Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal inflammation and glomerulosclerosis. The relative contribution of RAGE-dependent and RAGE-independent signaling pathways has not been previously studied in vivo. In this study, diabetic RAGE apoE double-knockout (KO) mice with streptozotocin-induced diabetes were treated with the AGE inhibitor, alagebrium (1 mg/kg/day), or the ACE inhibitor, quinapril (30 mg/kg/day), for 20 weeks, and renal parameters were assessed. RAGE deletion attenuated mesangial expansion, glomerular matrix accumulation, and renal oxidative stress associated with 20 weeks of diabetes. By contrast, inflammation and AGE accumulation associated with diabetes was not prevented. However, treatment with alagebrium in diabetic RAGE apoE KO mice reduced renal AGE levels and further reduced glomerular matrix accumulation. In addition, even in the absence of RAGE expression, alagebrium attenuated cortical inflammation, as denoted by the reduced expression of monocyte chemoattractant protein-1, intracellular adhesion molecule-1, and the macrophage marker cluster of differentiation molecule 11b. These novel findings confirm the presence of important RAGE-independent as well as RAGE-dependent signaling pathways that may be activated in the kidney by AGEs. This has important implications for the design of optimal therapeutic strategies for the prevention of diabetic nephropathy.
  • Item
    Thumbnail Image
    Confirmation of novel type 1 diabetes risk loci in families.
    Cooper, JD ; Howson, JMM ; Smyth, D ; Walker, NM ; Stevens, H ; Yang, JHM ; She, J-X ; Eisenbarth, GS ; Rewers, M ; Todd, JA ; Akolkar, B ; Concannon, P ; Erlich, HA ; Julier, C ; Morahan, G ; Nerup, J ; Nierras, C ; Pociot, F ; Rich, SS ; Type 1 Diabetes Genetics Consortium, (Springer Science and Business Media LLC, 2012-04)
    AIMS/HYPOTHESIS: Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study. METHODS: We genotyped the most disease-predicting single-nucleotide polymorphisms at the 18 susceptibility loci in 3,108 families and used existing genotype data for 2,319 families from the original study, providing 7,013 parent-child trios for analysis. We tested for association using the transmission disequilibrium test. RESULTS: Seventeen of the 18 susceptibility loci reached nominal levels of significance (p < 0.05) in the expanded family collection, with 14q24.1 just falling short (p = 0.055). When we allowed for multiple testing, ten of the 17 nominally significant loci reached the required level of significance (p < 2.8 × 10(-3)). All susceptibility loci had consistent direction of effects with the original study. CONCLUSIONS/INTERPRETATION: The results for the novel GWA study-identified loci are genuine and not due to population stratification. The next step, namely correlation of the most disease-associated genotypes with phenotypes, such as RNA and protein expression analyses for the candidate genes within or near each of the susceptibility regions, can now proceed.
  • Item
    Thumbnail Image
    Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes.
    Howson, JMM ; Cooper, JD ; Smyth, DJ ; Walker, NM ; Stevens, H ; She, J-X ; Eisenbarth, GS ; Rewers, M ; Todd, JA ; Akolkar, B ; Concannon, P ; Erlich, HA ; Julier, C ; Morahan, G ; Nerup, J ; Nierras, C ; Pociot, F ; Rich, SS ; Type 1 Diabetes Genetics Consortium, (American Diabetes Association, 2012-11)
    The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10⁻⁶ and 2.5 × 10⁻⁵, respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10⁻⁵). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.
  • Item
    Thumbnail Image
    Status and access to the Collaborative Cross population.
    Welsh, CE ; Miller, DR ; Manly, KF ; Wang, J ; McMillan, L ; Morahan, G ; Mott, R ; Iraqi, FA ; Threadgill, DW ; de Villena, FP-M (Springer Science and Business Media LLC, 2012-10)
    The Collaborative Cross (CC) is a panel of recombinant inbred lines derived from eight genetically diverse laboratory inbred strains. Recently, the genetic architecture of the CC population was reported based on the genotype of a single male per line, and other publications reported incompletely inbred CC mice that have been used to map a variety of traits. The three breeding sites, in the US, Israel, and Australia, are actively collaborating to accelerate the inbreeding process through marker-assisted inbreeding and to expedite community access of CC lines deemed to have reached defined thresholds of inbreeding. Plans are now being developed to provide access to this novel genetic reference population through distribution centers. Here we provide a description of the distribution efforts by the University of North Carolina Systems Genetics Core, Tel Aviv University, Israel and the University of Western Australia.
  • Item
    Thumbnail Image
    A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8.
    McCooke, JK ; Appels, R ; Barrero, RA ; Ding, A ; Ozimek-Kulik, JE ; Bellgard, MI ; Morahan, G ; Phillips, JK (Springer Science and Business Media LLC, 2012-08-16)
    BACKGROUND: Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. RESULTS: In this study, quantitative trait locus analysis was used to define a ~1.6 Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. CONCLUSIONS: When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins.
  • Item
    Thumbnail Image
    The Transcription Factor C/EBP delta Has Anti-Apoptotic and Anti-Inflammatory Roles in Pancreatic Beta Cells
    Moore, F ; Santin, I ; Nogueira, TC ; Gurzov, EN ; Marselli, L ; Marchetti, P ; Eizirik, DL ; Rishi, A (PUBLIC LIBRARY SCIENCE, 2012-02-08)
    In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding "protective" transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on β-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat β-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1β and IFN-γ in rat β-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1β+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced β-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected β-cells against IL-1β+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in β-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.
  • Item
    Thumbnail Image
    Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress-Mitochondrial Dialog Triggering Lipotoxic Rodent and Human β-Cell Apoptosis
    Cunha, DA ; Igoillo-Esteve, M ; Gurzov, EN ; Germano, CM ; Naamane, N ; Marhfour, I ; Fukaya, M ; Vanderwinden, J-M ; Gysemans, C ; Mathieu, C ; Marselli, L ; Marchetti, P ; Harding, HP ; Ron, D ; Eizirik, DL ; Cnop, M (AMER DIABETES ASSOC, 2012-11)
    Environmental factors such as diets rich in saturated fats contribute to dysfunction and death of pancreatic β-cells in diabetes. Endoplasmic reticulum (ER) stress is elicited in β-cells by saturated fatty acids. Here we show that palmitate-induced β-cell apoptosis is mediated by the intrinsic mitochondrial pathway. By microarray analysis, we identified a palmitate-triggered ER stress gene expression signature and the induction of the BH3-only proteins death protein 5 (DP5) and p53-upregulated modulator of apoptosis (PUMA). Knockdown of either protein reduced cytochrome c release, caspase-3 activation, and apoptosis in rat and human β-cells. DP5 induction depends on inositol-requiring enzyme 1 (IRE1)-dependent c-Jun NH₂-terminal kinase and PKR-like ER kinase (PERK)-induced activating transcription factor (ATF3) binding to its promoter. PUMA expression is also PERK/ATF3-dependent, through tribbles 3 (TRB3)-regulated AKT inhibition and FoxO3a activation. DP5(-/-) mice are protected from high fat diet-induced loss of glucose tolerance and have twofold greater pancreatic β-cell mass. This study elucidates the crosstalk between lipotoxic ER stress and the mitochondrial pathway of apoptosis that causes β-cell death in diabetes.
  • Item
    Thumbnail Image
    Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii).
    Davies, WIL ; Tay, B-H ; Zheng, L ; Danks, JA ; Brenner, S ; Foster, RG ; Collin, SP ; Hankins, MW ; Venkatesh, B ; Hunt, DM ; Burgess, HA (Public Library of Science (PLoS), 2012)
    Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas "long" and "short" splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both "invertebrate-like" bistable and classical "vertebrate-like" monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.
  • Item
    Thumbnail Image
    Nutrient Sensing, Autophagy, and Diabetic Nephropathy
    Kume, S ; Thomas, MC ; Koya, D (AMER DIABETES ASSOC, 2012-01)
  • Item
    Thumbnail Image
    The Renoprotective Actions of Peroxisome Proliferator-Activated Receptors Agonists in Diabetes
    Thomas, MC ; Jandeleit-Dahm, KA ; Tikellis, C (HINDAWI LTD, 2012)
    Pharmaceutical agonists of peroxisome proliferator-activated receptors (PPARs) are widely used in the management of type 2 diabetes, chiefly as lipid-lowering agents and oral hypoglycaemic agents. Although most of the focus has been placed on their cardiovascular effects, both positive and negative, these agents also have significant renoprotective actions in the diabetic kidney. Over and above action on metabolic control and effects on blood pressure, PPAR agonists also appear to have independent effects on a number of critical pathways that are implicated in the development and progression of diabetic kidney disease, including oxidative stress, inflammation, hypertrophy, and podocyte function. This review will examine these direct and indirect actions of PPAR agonists in the diabetic kidney and explore recent findings of clinical trials of PPAR agonists in patients with diabetes.