Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 64
  • Item
    Thumbnail Image
    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
    Motelow, JE ; Povysil, G ; Dhindsa, RS ; Stanley, KE ; Allen, AS ; Feng, Y-CA ; Howrigan, DP ; Abbott, LE ; Tashman, K ; Cerrato, F ; Cusick, C ; Singh, T ; Heyne, H ; Byrnes, AE ; Churchhouse, C ; Watts, N ; Solomonson, M ; Lal, D ; Gupta, N ; Neale, BM ; Cavalleri, GL ; Cossette, P ; Cotsapas, C ; De Jonghe, P ; Dixon-Salazar, T ; Guerrini, R ; Hakonarson, H ; Heinzen, EL ; Helbig, I ; Kwan, P ; Marson, AG ; Petrovski, S ; Kamalakaran, S ; Sisodiya, SM ; Stewart, R ; Weckhuysen, S ; Depondt, C ; Dlugos, DJ ; Scheffer, IE ; Striano, P ; Freyer, C ; Krause, R ; May, P ; McKenna, K ; Regan, BM ; Bennett, CA ; Leu, C ; Leech, SL ; O'Brien, TJ ; Todaro, M ; Stamberger, H ; Andrade, DM ; Ali, QZ ; Sadoway, TR ; Krestel, H ; Schaller, A ; Papacostas, SS ; Kousiappa, I ; Tanteles, GA ; Christou, Y ; Sterbova, K ; Vlckova, M ; Sedlackova, L ; Lassuthova, P ; Klein, KM ; Rosenow, F ; Reif, PS ; Knake, S ; Neubauer, BA ; Zimprich, F ; Feucht, M ; Reinthaler, EM ; Kunz, WS ; Zsurka, G ; Surges, R ; Baumgartner, T ; von Wrede, R ; Pendziwiat, M ; Muhle, H ; Rademacher, A ; van Baalen, A ; von Spiczak, S ; Stephani, U ; Afawi, Z ; Korczyn, AD ; Kanaan, M ; Canavati, C ; Kurlemann, G ; Muller-Schluter, K ; Kluger, G ; Haeusler, M ; Blatt, I ; Lemke, JR ; Krey, I ; Weber, YG ; Wolking, S ; Becker, F ; Lauxmann, S ; Bosselmann, C ; Kegele, J ; Hengsbach, C ; Rau, S ; Steinhoff, BJ ; Schulze-Bonhage, A ; Borggraefe, I ; Schankin, CJ ; Schubert-Bast, S ; Schreiber, H ; Mayer, T ; Korinthenberg, R ; Brockmann, K ; Wolff, M ; Dennig, D ; Madeleyn, R ; Kalviainen, R ; Saarela, A ; Timonen, O ; Linnankivi, T ; Lehesjoki, A-E ; Rheims, S ; Lesca, G ; Ryvlin, P ; Maillard, L ; Valton, L ; Derambure, P ; Bartolomei, F ; Hirsch, E ; Michel, V ; Chassoux, F ; Rees, M ; Chung, S-K ; Pickrell, WO ; Powell, R ; Baker, MD ; Fonferko-Shadrach, B ; Lawthom, C ; Anderson, J ; Schneider, N ; Balestrini, S ; Zagaglia, S ; Braatz, V ; Johnson, MR ; Auce, P ; Sills, GJ ; Baum, LW ; Sham, PC ; Cherny, SS ; Lui, CHT ; Delanty, N ; Doherty, CP ; Shukralla, A ; El-Naggar, H ; Widdess-Walsh, P ; Barisi, N ; Canafoglia, L ; Franceschetti, S ; Castellotti, B ; Granata, T ; Ragona, F ; Zara, F ; Iacomino, M ; Riva, A ; Madia, F ; Vari, MS ; Salpietro, V ; Scala, M ; Mancardi, MM ; Nobili, L ; Amadori, E ; Giacomini, T ; Bisulli, F ; Pippucci, T ; Licchetta, L ; Minardi, R ; Tinuper, P ; Muccioli, L ; Mostacci, B ; Gambardella, A ; Labate, A ; Annesi, G ; Manna, L ; Gagliardi, M ; Parrini, E ; Mei, D ; Vetro, A ; Bianchini, C ; Montomoli, M ; Doccini, V ; Barba, C ; Hirose, S ; Ishii, A ; Suzuki, T ; Inoue, Y ; Yamakawa, K ; Beydoun, A ; Nasreddine, W ; Zgheib, NK ; Tumiene, B ; Utkus, A ; Sadleir, LG ; King, C ; Caglayan, SH ; Arslan, M ; Yapici, Z ; Topaloglu, P ; Kara, B ; Yis, U ; Turkdogan, D ; Gundogdu-Eken, A ; Bebek, N ; Tsai, M-H ; Ho, C-J ; Lin, C-H ; Lin, K-L ; Chou, I-J ; Poduri, A ; Shiedley, BR ; Shain, C ; Noebels, JL ; Goldman, A ; Busch, RM ; Jehi, L ; Najm, IM ; Ferguson, L ; Khoury, J ; Glauser, TA ; Clark, PO ; Buono, RJ ; Ferraro, TN ; Sperling, MR ; Lo, W ; Privitera, M ; French, JA ; Schachter, S ; Kuzniecky, R ; Devinsky, O ; Hegde, M ; Greenberg, DA ; Ellis, CA ; Goldberg, E ; Helbig, KL ; Cosico, M ; Vaidiswaran, P ; Fitch, E ; Berkovic, SF ; Lerche, H ; Lowenstein, DH ; Goldstein, DB (CELL PRESS, 2021-06-03)
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
  • Item
    Thumbnail Image
    Add-on cannabidiol in patients with Dravet syndrome: Results of a long-term open-label extension trial
    Scheffer, IE ; Halford, JJ ; Miller, I ; Nabbout, R ; Sanchez-Carpintero, R ; Shiloh-Malawsky, Y ; Wong, M ; Zolnowska, M ; Checketts, D ; Dunayevich, E ; Devinsky, O (WILEY, 2021-10)
    OBJECTIVE: Add-on cannabidiol (CBD) reduced seizures associated with Dravet syndrome (DS) in two randomized, double-blind, placebo-controlled trials: GWPCARE1 Part B (NCT02091375) and GWPCARE2 (NCT02224703). Patients who completed GWPCARE1 Part A (NCT02091206) or Part B, or GWPCARE2, were enrolled in a long-term open-label extension trial, GWPCARE5 (NCT02224573). We present an interim analysis of the safety, efficacy, and patient-reported outcomes from GWPCARE5. METHODS: Patients received a pharmaceutical formulation of highly purified CBD in oral solution (100 mg/ml), titrated from 2.5 to 20 mg/kg/day over a 2-week period, added to their existing medications. Based on response and tolerance, CBD could be reduced or increased to 30 mg/kg/day. RESULTS: Of the 330 patients who completed the original randomized trials, 315 (95%) enrolled in this open-label extension. Median treatment duration was 444 days (range = 18-1535), with a mean modal dose of 22 mg/kg/day; patients received a median of three concomitant antiseizure medications. Adverse events (AEs) occurred in 97% patients (mild, 23%; moderate, 50%; severe, 25%). Commonly reported AEs were diarrhea (43%), pyrexia (39%), decreased appetite (31%), and somnolence (28%). Twenty-eight (9%) patients discontinued due to AEs. Sixty-nine (22%) patients had liver transaminase elevations >3 × upper limit of normal; 84% were on concomitant valproic acid. In patients from GWPCARE1 Part B and GWPCARE2, the median reduction from baseline in monthly seizure frequency assessed in 12-week periods up to Week 156 was 45%-74% for convulsive seizures and 49%-84% for total seizures. Across all visit windows, ≥83% patients/caregivers completing a Subject/Caregiver Global Impression of Change scale reported improvement in overall condition. SIGNIFICANCE: We show that long-term CBD treatment had an acceptable safety profile and led to sustained, clinically meaningful reductions in seizure frequency in patients with treatment-resistant DS.
  • Item
    Thumbnail Image
    Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies
    Ye, Z ; Bennett, MF ; Bahlo, M ; Scheffer, IE ; Berkovic, SF ; Perucca, P ; Hildebrand, MS (TAYLOR & FRANCIS LTD, 2021-11-02)
    INTRODUCTION: Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED: The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION: These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
  • Item
    Thumbnail Image
    Natural History Studies and Clinical Trial Readiness for Genetic Developmental and Epileptic Encephalopathies
    Palmer, EE ; Howell, K ; Scheffer, IE (SPRINGER, 2021-07)
    The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies. They usually begin in infancy or childhood with drug-resistant seizures, epileptiform EEG patterns, developmental slowing or regression, and cognitive impairment. DEEs have a high mortality and profound morbidity; comorbidities are common including autism spectrum disorders. With advances in genetic sequencing, over 400 genes have been implicated in DEEs, with a genetic cause now identified in over 50% patients. Each genetic DEE typically has a broad genotypic-phenotypic spectrum, based on the underlying pathophysiology. There is a pressing need to improve health outcomes by developing novel targeted therapies for specific genetic DEE phenotypes that not only improve seizure control, but also developmental outcomes and comorbidities. Clinical trial readiness relies firstly on a deep understanding of phenotype-genotype correlation and evolution of a condition over time, in order to select appropriate patients for clinical trials. Understanding the natural history of the disorder informs assessment of treatment efficacy in terms of both clinical outcome and biomarker utility. Natural history studies (NHS) provide a high quality, integrated, comprehensive approach to understanding a complex disease and underpin clinical trial design for novel therapies. NHS are pre-planned observational studies designed to track the course of a disease and identify demographic, genetic, environmental, and other variables, including biomarkers, that correlate with the disease's evolution and outcomes. Due to the rarity of individual genetic DEEs, appropriately funded high-quality DEE NHS will be required, with sustainable frameworks and equitable access to affected individuals globally.
  • Item
    Thumbnail Image
    Epidemiology of Treated Epilepsy in New Zealand Children A Focus on Ethnicity
    Ali, S ; Stanley, J ; Davis, S ; Keenan, N ; Scheffer, IE ; Sadleir, LG (LIPPINCOTT WILLIAMS & WILKINS, 2021-11-09)
    BACKGROUND AND OBJECTIVES: To determine the period prevalence and incidence of treated epilepsy in a New Zealand pediatric cohort with a focus on ethnicity and socioeconomic status. METHODS: This was a retrospective cohort study. The New Zealand Pharmaceutical Collection database was searched for individuals ≤18 years of age dispensed an antiseizure medication (ASM) in 2015 from areas capturing 48% of the New Zealand pediatric population. Medical records of identified cases were reviewed to ascertain the indication for the ASM prescription. Population data were derived from the New Zealand 2013 Census. RESULTS: A total of 3,557 ASMs were prescribed during 2015 in 2,594 children, of whom 1,717 (66%) children had epilepsy. An indication for prescription was ascertained for 3,332/3,557 (94%) ASMs. The period prevalence of treated epilepsy was 3.4 per 1,000 children. Children in the most deprived areas had 1.9 times the rate of treated epilepsy (95% confidence interval [CI] 1.6-2.2) as those from the least deprived areas. Prevalence was similar for most ethnic groups (European/other: 3.7, 95% CI 3.4-3.9; Pacific Peoples: 3.6, 95% CI 3.2-4.1; Māori: 3.4, 95% CI 3.1-3.8) apart from Asians, who had a lower prevalence of 2.3 per 1,000 (95% CI 2.0-2.6). However, when adjusted for socioeconomic deprivation, the prevalence of epilepsy was highest in European and similar in Māori, Pacific, and Asian children. DISCUSSION: This is the largest pediatric epidemiology epilepsy study where diagnosis of epilepsy was confirmed by case review. This is the first study to provide epidemiologic information for pediatric epilepsy in Māori and Pacific children.
  • Item
    No Preview Available
    Dravet syndrome: A quick transition guide for the adult neurologist
    Andrade, DM ; Berg, AT ; Hood, V ; Knupp, KG ; Koh, S ; Laux, L ; Meskis, MA ; Miller, I ; Perry, MS ; Scheffer, IE ; Sullivan, J ; Villas, N ; Wirrell, E (ELSEVIER, 2021-11)
    INTRODUCTION: Dravet syndrome (DS) is still seen as a "pediatric disease", where patients receive excellent care in pediatric centers, but care is less than optimal in adult health care systems (HCS). This creates a barrier when young adults need to leave the family-centered pediatric system and enter the adult, patient-centered HCS. Here we create a guide to help with the transition from pediatric to adult for patients with DS. METHODS: Experts in Dravet syndrome flagged the main barriers in caring for adults with DS and created a 2-page transition summary guide based on their expertise and a literature review. RESULTS: The 2-page guide addresses: DS diagnosis in children and adults; clinical manifestations, including the differences in seizures types and frequencies between children and adults with DS; the natural history of intellectual disability, behavior, gait, motor disorders and dysautonomia; a review of optimal treatments (including medications not commonly used in adult epilepsy settings such as stiripentol and fenfluramine), as well as emergency seizure management; avoidance of triggers, preventive measures, and vaccine administration in adults with DS. CONCLUSION: Several young adults with DS are still followed by their child neurologist. This 2-page transition guide should help facilitate the transition of patients with DS to the adult HCS and should be given to families as well as adult health care providers that may not be familiar with DS.
  • Item
    No Preview Available
    The aetiologies of epilepsy
    Balestrini, S ; Arzimanoglou, A ; Bluemcke, I ; Scheffer, IE ; Wiebe, S ; Zelano, J ; Walker, MC (JOHN LIBBEY EUROTEXT LTD, 2021-02)
    The identification of the aetiology of a patient's epilepsy is instrumental in the diagnosis, prognostic counselling and management of the epilepsies. Indeed, the aetiology can be important for determining the recurrence risk of single seizures and so for making a diagnosis of epilepsy. Here, we divide the aetiologies into six categories: structural, genetic, infectious, metabolic, immune (all of which are part of the International League Against Epilepsy [ILAE] classification system) and neurodegenerative (which we have considered separately because of its growing importance in epilepsy). These are not mutually exclusive categories and many aetiologies fall into more than one category. Indeed, genetic factors probably play a role, to varying degrees, in the risk of seizures in all people with epilepsy. In each of the categories, we discuss what we regard as the most important aetiologies; importance being determined not only by prevalence but also by clinical significance. The introduction contains information suitable for level 1 competency (entry level), whilst the subsequent sections contain information aimed at level 2 competency (proficiency level) as part of the new ILAE competency-based curriculum. As we move towards precision medicine and targeted therapies, so aetiologies will play an even greater role in the management of epilepsy.
  • Item
    No Preview Available
    Climate change and epilepsy: Insights from clinical and basic science studies
    Gulcebi, M ; Bartolini, E ; Lee, O ; Lisgaras, CP ; Onat, F ; Mifsud, J ; Striano, P ; Vezzani, A ; Hildebrand, MS ; Jimenez-Jimenez, D ; Junck, L ; Lewis-Smith, D ; Scheffer, IE ; Thijs, RD ; Zuberi, SM ; Blenkinsop, S ; Fowler, HJ ; Foley, A ; Sisodiya, SM ; Balestrini, S ; Berkovic, S ; Cavalleri, G ; Correa, DJ ; Custodio, HM ; Galovic, M ; Guerrini, R ; Henshall, D ; Howard, O ; Hughes, K ; Katsarou, A ; Koeleman, BPC ; Krause, R ; Lowenstein, D ; Mandelenaki, D ; Marini, C ; O'Brien, TJ ; Pace, A ; De Palma, L ; Perucca, P ; Pitkanen, A ; Quinn, F ; Selmer, KK ; Steward, CA ; Swanborough, N ; Thijs, R ; Tittensor, P ; Trivisano, M ; Weckhuysen, S ; Zara, F (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-03)
    Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.
  • Item
    Thumbnail Image
    ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria
    Vetro, A ; Nielsen, HN ; Holm, R ; Hevner, RF ; Parrini, E ; Powis, Z ; Moller, RS ; Bellan, C ; Simonati, A ; Lesca, G ; Helbig, KL ; Palmer, EE ; Mei, D ; Ballardini, E ; Van Haeringen, A ; Syrbe, S ; Leuzzi, V ; Cioni, G ; Curry, CJ ; Costain, G ; Santucci, M ; Chong, K ; Mancini, GMS ; Clayton-Smith, J ; Bigoni, S ; Scheffer, IE ; Dobyns, WB ; Vilsen, B ; Guerrini, R (OXFORD UNIV PRESS, 2021-05)
    Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
  • Item
    Thumbnail Image
    Distinct gene-set burden patterns underlie common generalized and focal epilepsies
    Koko, M ; Krause, R ; Sander, T ; Bobbili, DR ; Nothnagel, M ; May, P ; Lerche, H (ELSEVIER, 2021-10)
    BACKGROUND: Analyses of few gene-sets in epilepsy showed a potential to unravel key disease associations. We set out to investigate the burden of ultra-rare variants (URVs) in a comprehensive range of biologically informed gene-sets presumed to be implicated in epileptogenesis. METHODS: The burden of 12 URV types in 92 gene-sets was compared between cases and controls using whole exome sequencing data from individuals of European descent with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), or non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. FINDINGS: Missense URVs in highly constrained regions were enriched in neuron-specific and developmental genes, whereas genes not expressed in brain were not affected. GGE featured a higher burden in gene-sets derived from inhibitory vs. excitatory neurons or associated receptors, whereas the opposite was found for NAFE, and DEE featured a burden in both. Top-ranked susceptibility genes from recent genome-wide association studies (GWAS) and gene-sets derived from generalized vs. focal epilepsies revealed specific enrichment patterns of URVs in GGE vs. NAFE. INTERPRETATION: Missense URVs affecting highly constrained sites differentially impact genes expressed in inhibitory vs. excitatory pathways in generalized vs. focal epilepsies. The excess of URVs in top-ranked GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. FUNDING: DFG Research Unit FOR-2715 (Germany), FNR (Luxembourg), NHGRI (US), NHLBI (US), DAAD (Germany).