Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality
    Prowle, JR ; Echeverri, JE ; Ligabo, EV ; Sherry, N ; Taori, GC ; Crozier, TM ; Hart, GK ; Korman, TM ; Mayall, BC ; Johnson, PDR ; Bellomo, R (BMC, 2011)
    INTRODUCTION: To estimate the incidence of intensive care unit (ICU)-acquired bloodstream infection (BSI) and its independent effect on hospital mortality. METHODS: We retrospectively studied acquisition of BSI during admissions of >72 hours to adult ICUs from two university-affiliated hospitals. We obtained demographics, illness severity and co-morbidity data from ICU databases and microbiological diagnoses from departmental electronic records. We assessed survival at hospital discharge or at 90 days if still hospitalized. RESULTS: We identified 6339 ICU admissions, 330 of which were complicated by BSI (5.2%). Median time to first positive culture was 7 days (IQR 5-12). Overall mortality was 23.5%, 41.2% in patients with BSI and 22.5% in those without. Patients who developed BSI had higher illness severity at ICU admission (median APACHE III score: 79 vs. 68, P < 0.001). After controlling for illness severity and baseline demographics by Cox proportional-hazard model, BSI remained independently associated with risk of death (hazard ratio from diagnosis 2.89; 95% confidence interval 2.41-3.46; P < 0.001). However, only 5% of the deaths in this model could be attributed to acquired-BSI, equivalent to an absolute decrease in survival of 1% of the total population. When analyzed by microbiological classification, Candida, Staphylococcus aureus and gram-negative bacilli infections were independently associated with increased risk of death. In a sub-group analysis intravascular catheter associated BSI remained associated with significant risk of death (hazard ratio 2.64; 95% confidence interval 1.44-4.83; P = 0.002). CONCLUSIONS: ICU-acquired BSI is associated with greater in-hospital mortality, but complicates only 5% of ICU admissions and its absolute effect on population mortality is limited. These findings have implications for the design and interpretation of clinical trials.
  • Item
    Thumbnail Image
    Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest
    Bellomo, R ; Bailey, M ; Eastwood, GM ; Nichol, A ; Pilcher, D ; Hart, GK ; Reade, MC ; Egi, M ; Cooper, DJ (BIOMED CENTRAL LTD, 2011)
    INTRODUCTION: Hyperoxia has recently been reported as an independent risk factor for mortality in patients resuscitated from cardiac arrest. We examined the independent relationship between hyperoxia and outcomes in such patients. METHODS: We divided patients resuscitated from nontraumatic cardiac arrest from 125 intensive care units (ICUs) into three groups according to worst PaO2 level or alveolar-arterial O2 gradient in the first 24 hours after admission. We defined 'hyperoxia' as PaO2 of 300 mmHg or greater, 'hypoxia/poor O2 transfer' as either PaO2 < 60 mmHg or ratio of PaO2 to fraction of inspired oxygen (FiO2 ) < 300, 'normoxia' as any value between hypoxia and hyperoxia and 'isolated hypoxemia' as PaO2 < 60 mmHg regardless of FiO2. Mortality at hospital discharge was the main outcome measure. RESULTS: Of 12,108 total patients, 1,285 (10.6%) had hyperoxia, 8,904 (73.5%) had hypoxia/poor O2 transfer, 1,919 (15.9%) had normoxia and 1,168 (9.7%) had isolated hypoxemia (PaO2 < 60 mmHg). The hyperoxia group had higher mortality (754 (59%) of 1,285 patients; 95% confidence interval (95% CI), 56% to 61%) than the normoxia group (911 (47%) of 1,919 patients; 95% CI, 45% to 50%) with a proportional difference of 11% (95% CI, 8% to 15%), but not higher than the hypoxia group (5,303 (60%) of 8,904 patients; 95% CI, 59% to 61%). In a multivariable model controlling for some potential confounders, including illness severity, hyperoxia had an odds ratio for hospital death of 1.2 (95% CI, 1.1 to 1.6). However, once we applied Cox proportional hazards modelling of survival, sensitivity analyses using deciles of hypoxemia, time period matching and hyperoxia defined as PaO2 > 400 mmHg, hyperoxia had no independent association with mortality. Importantly, after adjustment for FiO2 and the relevant covariates, PaO2 was no longer predictive of hospital mortality (P = 0.21). CONCLUSIONS: Among patients admitted to the ICU after cardiac arrest, hyperoxia did not have a robust or consistently reproducible association with mortality. We urge caution in implementing policies of deliberate decreases in FiO2 in these patients.