Medicine (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 262
  • Item
    Thumbnail Image
    Endophenotyping social cognition in the broader autism phenotype
    Pua, EPK ; Desai, T ; Green, C ; Trevis, K ; Brown, N ; Delatycki, M ; Scheffer, I ; Wilson, S (WILEY, 2023-11-30)
    Relatives of individuals with autism spectrum disorder (ASD) may display milder social traits of the broader autism phenotype (BAP) providing potential endophenotypic markers of genetic risk for ASD. We performed a case-control comparison to quantify social cognition and pragmatic language difficulties in the BAP (n = 25 cases; n = 33 controls) using the Faux Pas test (FPT) and the Goldman-Eisler Cartoon task. Using deep phenotyping we then examined patterns of inheritance of social cognition in two large multiplex families and the spectrum of performance in 32 additional families (159 members; n = 51 ASD, n = 87 BAP, n = 21 unaffected). BAP individuals showed significantly poorer FPT performance and reduced verbal fluency with the absence of a compression effect in social discourse compared to controls. In multiplex families, we observed reduced FPT performance in 89% of autistic family members, 63% of BAP relatives and 50% of unaffected relatives. Across all affected families, there was a graded spectrum of difficulties, with ASD individuals showing the most severe FPT difficulties, followed by the BAP and unaffected relatives compared to community controls. We conclude that relatives of probands show an inherited pattern of graded difficulties in social cognition with atypical faux pas detection in social discourse providing a novel candidate endophenotype for ASD.
  • Item
    Thumbnail Image
    Genetic architecture of childhood speech disorder: a review
    Morgan, AT ; Amor, DJ ; St John, MD ; Scheffer, IE ; Hildebrand, MS (SPRINGERNATURE, 2024-02-16)
    Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the 1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong (9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS. Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by gene discovery for CAS highlight potential new targets for future precision therapies.
  • Item
    Thumbnail Image
    Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy
    de Nys, R ; van Eyk, CL ; Ritchie, T ; Moller, RS ; Scheffer, IE ; Marini, C ; Bhattacharjee, R ; Kumar, R ; Gecz, J (SPRINGERNATURE, 2024-01-27)
    Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.
  • Item
    Thumbnail Image
    Exploring individual fixel-based white matter abnormalities in epilepsy
    Mito, R ; Pedersen, M ; Pardoe, H ; Parker, D ; Smith, RE ; Cameron, J ; Scheffer, IE ; Berkovic, SF ; Vaughan, DN ; Jackson, GD (OXFORD UNIV PRESS, 2023-12-28)
    Diffusion MRI has provided insight into the widespread structural connectivity changes that characterize epilepsies. Although syndrome-specific white matter abnormalities have been demonstrated, studies to date have predominantly relied on statistical comparisons between patient and control groups. For diffusion MRI techniques to be of clinical value, they should be able to detect white matter microstructural changes in individual patients. In this study, we apply an individualized approach to a technique known as fixel-based analysis, to examine fibre-tract-specific abnormalities in individuals with epilepsy. We explore the potential clinical value of this individualized fixel-based approach in epilepsy patients with differing syndromic diagnoses. Diffusion MRI data from 90 neurologically healthy control participants and 10 patients with epilepsy (temporal lobe epilepsy, progressive myoclonus epilepsy, and Dravet Syndrome, malformations of cortical development) were included in this study. Measures of fibre density and cross-section were extracted for all participants across brain white matter fixels, and mean values were computed within select tracts-of-interest. Scanner harmonized and normalized data were then used to compute Z-scores for individual patients with epilepsy. White matter abnormalities were observed in distinct patterns in individual patients with epilepsy, both at the tract and fixel level. For patients with specific epilepsy syndromes, the detected white matter abnormalities were in line with expected syndrome-specific clinical phenotypes. In patients with lesional epilepsies (e.g. hippocampal sclerosis, periventricular nodular heterotopia, and bottom-of-sulcus dysplasia), white matter abnormalities were spatially concordant with lesion location. This proof-of-principle study demonstrates the clinical potential of translating advanced diffusion MRI methodology to individual-patient-level use in epilepsy. This technique could be useful both in aiding diagnosis of specific epilepsy syndromes, and in localizing structural abnormalities, and is readily amenable to other neurological disorders. We have included code and data for this study so that individualized white matter changes can be explored robustly in larger cohorts in future work.
  • Item
    No Preview Available
    Expanding the phenotype of Kleefstra syndrome: speech, language and cognition in 103 individuals
    Morison, LD ; Kennis, MGP ; Rots, D ; Bouman, A ; Kummeling, J ; Palmer, E ; Vogel, AP ; Liegeois, F ; Brignell, A ; Srivastava, S ; Frazier, Z ; Milnes, D ; Goel, H ; Amor, DJ ; Scheffer, IE ; Kleefstra, T ; Morgan, AT (BMJ PUBLISHING GROUP, 2024-01-30)
    OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.
  • Item
    No Preview Available
    Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature.
    LaFlamme, CW ; Rastin, C ; Sengupta, S ; Pennington, HE ; Russ-Hall, SJ ; Schneider, AL ; Bonkowski, ES ; Almanza Fuerte, EP ; Galey, M ; Goffena, J ; Gibson, SB ; Allan, TJ ; Nyaga, DM ; Lieffering, N ; Hebbar, M ; Walker, EV ; Darnell, D ; Olsen, SR ; Kolekar, P ; Djekidel, N ; Rosikiewicz, W ; McConkey, H ; Kerkhof, J ; Levy, MA ; Relator, R ; Lev, D ; Lerman-Sagie, T ; Park, KL ; Alders, M ; Cappuccio, G ; Chatron, N ; Demain, L ; Genevieve, D ; Lesca, G ; Roscioli, T ; Sanlaville, D ; Tedder, ML ; Hubshman, MW ; Ketkar, S ; Dai, H ; Worley, KC ; Rosenfeld, JA ; Chao, H-T ; Undiagnosed Diseases Network, ; Neale, G ; Carvill, GL ; University of Washington Center for Rare Disease Research, ; Wang, Z ; Berkovic, SF ; Sadleir, LG ; Miller, DE ; Scheffer, IE ; Sadikovic, B ; Mefford, HC (Cold Spring Harbor Laboratory, 2023-10-12)
    Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
  • Item
    No Preview Available
    Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40
    Morgan, AT ; Scerri, TS ; Vogel, AP ; Reid, CA ; Quach, M ; Jackson, VE ; McKenzie, C ; Burrows, EL ; Bennett, MF ; Turner, SJ ; Reilly, S ; Horton, SE ; Block, S ; Kefalianos, E ; Frigerio-Domingues, C ; Sainz, E ; Rigbye, KA ; Featherby, TJ ; Richards, KL ; Kueh, A ; Herold, MJ ; Corbett, MA ; Gecz, J ; Helbig, I ; Thompson-Lake, DGY ; Liegeois, FJ ; Morell, RJ ; Hung, A ; Drayna, D ; Scheffer, IE ; Wright, DK ; Bahlo, M ; Hildebrand, MS (OXFORD UNIV PRESS, 2023-12-01)
    Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.
  • Item
    Thumbnail Image
    Perisylvian and Hippocampal Anomalies in Individuals With Pathogenic GRIN2A Variants
    Thompson-Lake, DGY ; Liegeois, FJ ; Braden, RO ; Jackson, GD ; Turner, SJ ; Morison, L ; Hildebrand, M ; Scheffer, IE ; Morgan, AT (Wolters Kluwer, 2024-04)
    Background and Objectives: Pathogenic variants in GRIN2A are associated with a spectrum of epilepsy-aphasia syndromes (EASs). Seizures as well as speech and language disorders occur frequently but vary widely in severity, both between individuals and across the life span. The link between this phenotypic spectrum and brain characteristics is unknown. Specifically, altered brain networks at the root of speech and language deficits remain to be identified. Patients with pathogenic variants in GRIN2A offer an opportunity to interrogate the impact of glutamate receptor dysfunction on brain development. Methods: We characterized brain anomalies in individuals with pathogenic GRIN2A variants and EASs, hypothesizing alterations in perisylvian speech-language regions and the striatum. We compared structural MRI data from 10 individuals (3 children and 7 adults, 3 female) with pathogenic GRIN2A variants with data from age-matched controls (N = 51 and N = 203 in a secondary analysis). We examined cortical thickness and volume in 4 a priori hypothesized speech and language regions (inferior frontal, precentral, supramarginal, and superior temporal) and across the whole brain. Subcortical structures (hippocampus, basal ganglia, thalamus) and the corpus callosum were also compared. Results: Individuals with pathogenic GRIN2A variants showed increased thickness and volume in the posterior part of Broca's area (inferior frontal gyrus, pars opercularis). For thickness, the effects were bilateral but more pronounced in the left (large effect size, η2 = 0.37) than the right (η2 = 0.12) hemisphere. Both volume and thickness were also higher in the bilateral superior temporal region while the supramarginal region showed increased thickness only. Whole-brain analyses confirmed left-sided thickness increases in Broca's area, with additional increases in the occipital and superior frontal cortices bilaterally. Hippocampal volume was reduced in the left hemisphere. There were no age-dependent effects or corpus callosum group differences. Discussion: Anomalies in perisylvian regions, with largest differences in Broca's area, suggest an altered development of classical speech-language networks in GRIN2A-related EAS. Left hippocampal reduction suggests a role for this structure in early speech and language development and is consistent with GRIN2A gene expression in that region. Overall, elucidating the neural correlates of EAS provides insights into the impact of GRIN2A dysfunction, opening avenues for targeted intervention in developmental syndromes with compromised speech-language development.
  • Item
    Thumbnail Image
    Severe communication delays are independent of seizure burden and persist despite contemporary treatments in SCN1A+ Dravet syndrome: Insights from the ENVISION natural history study
    Perry, MS ; Scheffer, IE ; Sullivan, J ; Brunklaus, A ; Boronat, S ; Wheless, JW ; Laux, L ; Patel, AD ; Roberts, CM ; Dlugos, D ; Holder, D ; Knupp, KG ; Lallas, M ; Phillips, S ; Segal, E ; Smeyers, P ; Lal, D ; Wirrell, E ; Zuberi, S ; Bruenger, T ; Wojnaroski, M ; Maru, B ; O'Donnell, P ; Morton, M ; James, E ; Vila, MC ; Huang, N ; Gofshteyn, JS ; Rico, S (WILEY, 2024-02)
    OBJECTIVE: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment-resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. METHODS: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent-reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6-2:0 years:months (Y:M; youngest), 2:1-3:6 Y:M (middle), and 3:7-5:0 Y:M (oldest). RESULTS: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow-up was 17.5 months (range = .0-24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum-maximum] = 1.0 in the youngest [1.0-70.0] and middle [1.0-242.0] age groups and 4.5 [.0-2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. SIGNIFICANCE: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age.
  • Item
    No Preview Available
    Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5.
    Happ, HC ; Sadleir, LG ; Zemel, M ; de Valles-Ibáñez, G ; Hildebrand, MS ; McConkie-Rosell, A ; McDonald, M ; May, H ; Sands, T ; Aggarwal, V ; Elder, C ; Feyma, T ; Bayat, A ; Møller, RS ; Fenger, CD ; Klint Nielsen, JE ; Datta, AN ; Gorman, KM ; King, MD ; Linhares, ND ; Burton, BK ; Paras, A ; Ellard, S ; Rankin, J ; Shukla, A ; Majethia, P ; Olson, RJ ; Muthusamy, K ; Schimmenti, LA ; Starnes, K ; Sedláčková, L ; Štěrbová, K ; Vlčková, M ; Laššuthová, P ; Jahodová, A ; Porter, BE ; Couque, N ; Colin, E ; Prouteau, C ; Collet, C ; Smol, T ; Caumes, R ; Vansenne, F ; Bisulli, F ; Licchetta, L ; Person, R ; Torti, E ; McWalter, K ; Webster, R ; Gerard, EE ; Lesca, G ; Szepetowski, P ; Scheffer, IE ; Mefford, HC ; Carvill, GL (Ovid Technologies (Wolters Kluwer Health), 2023-02-07)
    BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.