Microbiology & Immunology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Nanoparticle interactions with the immune system
    Kelly, Hannah Gabrielle ( 2021)
    Vaccination has been an incredibly successful public health intervention, saving the lives of 2-3 million people each year. Despite this success, we still lack effective vaccines for many infectious diseases including HIV, tuberculosis and malaria. Nanoparticles (ordered structures within the range of 10-1000nm) have great potential to supplement traditional vaccines based upon pathogen subunits, or killed or attenuated microorganisms, as demonstrated by the successful licensure of virus-like particle vaccines for human papillomavirus and liposomal mRNA vaccines for SARS-CoV2. However, the immunological mechanisms that explain the potent immunity of nanoparticle vaccines and the factors dictating their interaction with the immune system are poorly defined. This thesis studies how nanoparticle characteristics affect their interaction with the immune system with a view to improving vaccine strategies. First, the contribution of the protein corona on the association of engineered nanoparticles with primary human blood cells was assessed. The association of high protein binding (high-fouling) mesoporous silica (MS) particles and low-fouling zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) particles with human white blood cells was assessed by flow cytometry in the presence or absence of plasma proteins. The effect of precoating nanoparticles with serum albumin, IgG and complement protein C1q was also assessed. The differential association of low and high-fouling nanoparticles was found to be largely a consequence of the de novo formed, not pre-adsorbed, biomolecular corona. Specifically, an enrichment of complement proteins within the corona resulted in an increased association with B cells. Second, the immune mechanisms that give rise to the improved immunogenicity of a prototypic nanoparticle vaccine were investigated. Humoral immune responses to a self-assembling protein nanoparticle vaccine for influenza (HA-ferritin) were contrasted to a subunit influenza vaccine (soluble HA) in mouse and non-human primate models. Antibody titres and protective efficacy of the vaccines were compared followed by a detailed study of lymph node germinal centre B cell and T follicular helper cell responses. Vaccination of C57BL/6 mice with HA-ferritin nanoparticles elicited higher serum IgG titres and greater protection against experimental influenza challenge compared with soluble HA vaccination. Within the antigen-draining lymph nodes, germinal centre reactions were expanded and persistent following HA-ferritin vaccination. This augmented humoral immunity was not driven by ferritin-specific T follicular helper cells but rather driven by expanded antigen colocalization with follicular dendritic cells. However, this immune enhancement did not translate from mice to pigtail macaques where antibody titres and lymph node immunity following HA-ferritin nanoparticle vaccination were comparable to soluble HA protein vaccination. And thirdly, we explored innate immune activation by HA-ferritin and soluble HA in mice. This was achieved through in vitro assessment of antigen glycosylation and complement activation and in vivo through serum IgM titres and cell trafficking to the lymph nodes following vaccination. HA-ferritin vaccination of mice was found to elicit an early enhancement of antigen-specific serum IgM however in vitro complement activation was not detected. Trafficking of immune cells to the lymph nodes was found to be influenced by antigen glycan composition in conjunction with purification methods. The findings of this thesis suggest that nanoparticle interaction with the immune system is driven by the complex interplay of nanoparticle physiochemical properties, antigen glycosylation, corona formation and pattern-recognition receptors of innate immune cells. Further improvements in understanding the relationship between these features and how they may differ between animal species will speed the rational design of next-generation nanoparticle vaccines against diverse pathogens.