Resource Management and Geography - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 181
  • Item
    Thumbnail Image
    The First Isolation and Characterisation of the Protist Labyrinthula sp in Southeastern Australia
    Sullivan, BK ; Robinson, KL ; Trevathan-Tackett, SM ; Lilje, ES ; Gleason, FH ; Lilje, O (WILEY, 2017-07-01)
    As a result of anthropogenic influences and global climate change, emerging infectious marine diseases are thought to be increasingly more common and more severe than in the past. The aim of our investigation was to confirm the presence of Labyrinthula, the aetiological agent of the seagrass wasting disease, in Southeastern Australia and provide the first isolation and characterisation of this protist, in Australia. Colonies and individual cells were positively identified as Labyrinthula using published descriptions, diagrams, and photographs. Their identity was then confirmed using DNA barcoding of a region of the 18S rRNA gene. Species level identification of isolates was not possible as the taxonomy of the Labyrinthula is still poorly resolved. Still, a diversity of Labyrinthula was isolated from small sections of the southeast coast of Australia. The isolates were grouped into three haplotypes that are biogeographically restricted. These haplotypes are closely related to previously identified saprotrophic clades. The study highlights the need for further investigation into the global distribution of Labyrinthula, including phylogenetic pathogenicity and analysis of host-parasite interactions in response to stressors. Given the results of our analyses, it is prudent to continue research into disease and epidemic agents to better prepare researchers for potential future outbreaks.
  • Item
    Thumbnail Image
    Late quaternary speleogenesis and landscape evolution in the northern Apennine evaporite areas
    Columbu, A ; Chiarini, V ; De Waele, J ; Drysdale, R ; Woodhead, J ; Hellstrom, J ; Forti, P (WILEY, 2017-08-01)
  • Item
  • Item
    Thumbnail Image
    Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change
    Rawal, DS ; Kasel, S ; Keatley, MR ; Nitschke, CR (SPRINGER, 2015-09-01)
    Germination is considered one of the important phenological stages that are influenced by environmental factors, with timing and abundance determining plant establishment and recruitment. This study investigates the influence of temperature, soil moisture and light on the germination phenology of six Eucalyptus species from two co-occurring groups of three species representing warm-dry and cool-moist sclerophyll forests. Data from germination experiments were used to calibrate the germination module of the mechanistic model TACA-GEM, to evaluate germination phenology under a range of climate change scenarios. With the exception of E. polyanthemos, the optimal niche for all species was characterised by cool-moist stratification, low light, cool temperatures and high soil moisture. Model results indicated that of the warm-dry species, Eucalyptus microcarpa exhibited greater germination and establishment under projected changes of warmer drier conditions than its co-occurring species Eucalyptus polyanthemos and Eucalyptus tricarpa which suggests that E. microcarpa could maintain its current distribution under a warmer and drier climate in southeastern Australia. Among the cool-moist species, Eucalyptus radiata was the only species that established under projected climate change of the 2080s but at such a low probability that its persistence compared to Eucalyptus obliqua and Eucalyptus sieberi cannot be posited. For all cool-moist species, germination did not benefit from the phenological shifts they displayed. This study successfully demonstrated environmental effects on germination phenology and how a shift in climate can influence the timing and success of recruitment.
  • Item
    Thumbnail Image
    Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis
    Hamilton, AJ ; Novotny, V ; Waters, EK ; Basset, Y ; Benke, KK ; Grimbacher, PS ; Miller, SE ; Samuelson, GA ; Weiblen, GD ; Yen, JDL ; Stork, NE (SPRINGER, 2013-02-01)
    A key challenge in the estimation of tropical arthropod species richness is the appropriate management of the large uncertainties associated with any model. Such uncertainties had largely been ignored until recently, when we attempted to account for uncertainty associated with model variables, using Monte Carlo analysis. This model is restricted by various assumptions. Here, we use a technique known as probability bounds analysis to assess the influence of assumptions about (1) distributional form and (2) dependencies between variables, and to construct probability bounds around the original model prediction distribution. The original Monte Carlo model yielded a median estimate of 6.1 million species, with a 90 % confidence interval of [3.6, 11.4]. Here we found that the probability bounds (p-bounds) surrounding this cumulative distribution were very broad, owing to uncertainties in distributional form and dependencies between variables. Replacing the implicit assumption of pure statistical independence between variables in the model with no dependency assumptions resulted in lower and upper p-bounds at 0.5 cumulative probability (i.e., at the median estimate) of 2.9-12.7 million. From here, replacing probability distributions with probability boxes, which represent classes of distributions, led to even wider bounds (2.4-20.0 million at 0.5 cumulative probability). Even the 100th percentile of the uppermost bound produced (i.e., the absolutely most conservative scenario) did not encompass the well-known hyper-estimate of 30 million species of tropical arthropods. This supports the lower estimates made by several authors over the last two decades.
  • Item
    Thumbnail Image
    Iwao's patchiness regression through the origin: biological importance and efficiency of sampling applications
    Waters, EK ; Furlong, MJ ; Benke, KK ; Grove, JR ; Hamilton, AJ (SPRINGER JAPAN KK, 2014-04-01)
  • Item
    Thumbnail Image
    The effect of urban ground covers on arthropods: An experiment
    Norton, BA ; Thomson, LJ ; Williams, NSG ; McDonnell, MJ (SPRINGER, 2014-03-01)
  • Item
    Thumbnail Image
    Ecological functions of zoosporic hyperparasites.
    Gleason, FH ; Lilje, O ; Marano, AV ; Sime-Ngando, T ; Sullivan, BK ; Kirchmair, M ; Neuhauser, S (Frontiers Media SA, 2014)
    Zoosporic parasites have received increased attention during the last years, but it is still largely unnoted that these parasites can themselves be infected by hyperparasites. Some members of the Chytridiomycota, Blastocladiomycota, Cryptomycota, Hyphochytriomycota, Labyrinthulomycota, Oomycota, and Phytomyxea are hyperparasites of zoosporic hosts. Because of sometimes complex tripartite interactions between hyperparasite, their parasite-host, and the primary host, hyperparasites can be difficult to detect and monitor. Some of these hyperparasites use similar mechanisms as their parasite-hosts to find and infect their target and to access food resources. The life cycle of zoosporic hyperparasites is usually shorter than the life cycle of their hosts, so hyperparasites may accelerate the turnaround times of nutrients within the ecosystem. Hyperparasites may increase the complexity of food webs and play significant roles in regulating population sizes and population dynamics of their hosts. We suggest that hyperparasites lengthen food chains but can also play a role in conducting or suppressing diseases of animals, plants, or algae. Hyperparasites can significantly impact ecosystems in various ways, therefore it is important to increase our understanding about these cryptic and diverse organisms.
  • Item
    Thumbnail Image
    Hope, despair and transformation: Climate change and the promotion of mental health and wellbeing.
    Fritze, JG ; Blashki, GA ; Burke, S ; Wiseman, J (Springer Science and Business Media LLC, 2008-09-17)
    BACKGROUND: This article aims to provide an introduction to emerging evidence and debate about the relationship between climate change and mental health. DISCUSSION AND CONCLUSION: The authors argue that:i) the direct impacts of climate change such as extreme weather events will have significant mental health implications;ii) climate change is already impacting on the social, economic and environmental determinants of mental health with the most severe consequences being felt by disadvantaged communities and populations; iii) understanding the full extent of the long term social and environmental challenges posed by climate change has the potential to create emotional distress and anxiety; and iv) understanding the psycho-social implications of climate change is also an important starting point for informed action to prevent dangerous climate change at individual, community and societal levels.
  • Item
    Thumbnail Image
    The Overlooked Biodiversity of Flower-Visiting Invertebrates
    Wardhaugh, CW ; Stork, NE ; Edwards, W ; Grimbacher, PS ; Ollerton, J (PUBLIC LIBRARY SCIENCE, 2012-09-19)
    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.