Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats
    Tran, M ; Young, ME ; Jefferies, AJ ; Hryciw, DH ; Ward, MM ; Fletcher, EL ; Wlodek, ME ; Wadley, GD (WILEY, 2015-09)
    Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.
  • Item
    No Preview Available
    Adrenal, metabolic and cardio-renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy
    Cheong, JN ; Cuffe, JSM ; Jefferies, AJ ; Moritz, KM ; Wlodek, ME (WILEY, 2016-10-15)
    KEY POINTS: Women born small are at an increased risk of developing pregnancy complications. Stress may further increase a woman's likelihood for an adverse pregnancy. Adverse pregnancy adaptations can lead to long-term diseases even after her pregnancy. The current study investigated the effects of stress during pregnancy on the long-term adrenal, metabolic and cardio-renal health of female rats that were born small. Stress programmed increased adrenal Mc2r gene expression, a higher insulin secretory response to glucose during intraperitoneal glucose tolerance test (+36%) and elevated renal creatinine clearance after pregnancy. Females that were born small had increased homeostatic model assessment-insulin resistance and elevated systolic blood pressure after pregnancy, regardless of stress exposure. These findings suggest that being born small or being stressed during pregnancy programs long-term adverse health outcomes after pregnancy. However, stress in pregnancy does not exacerbate the long-term adverse health outcomes for females that were born small. ABSTRACT: Females born small are more likely to experience complications during their pregnancy, including pregnancy-induced hypertension, pre-eclampsia and gestational diabetes. The risk of developing complications is increased by stress exposure during pregnancy. In addition, pregnancy complications may predispose the mother to diseases after pregnancy. We determined whether stress during pregnancy would exacerbate the adrenal, metabolic and cardio-renal dysfunction of growth-restricted females in later life. Late gestation bilateral uterine vessel ligation was performed in Wistar Kyoto rats to induce growth restriction. At 4 months, growth-restricted and control female offspring were mated with normal males. Those allocated to the stressed group had physiological measurements [metabolic cage, tail cuff blood pressure, intraperitoneal glucose tolerance test (IPGTT)] conducted during pregnancy whilst the unstressed groups were unhandled. After the completion of pregnancy, dams were aged to 12 months and blood pressure, and metabolic and renal function were assessed. At 13 months, adrenal glands, pancreases and plasma were collected at post-mortem. Females stressed during pregnancy had increased adrenal Mc2r gene expression (+22%), higher insulin secretory response to glucose during IPGTT (+36%) and higher creatinine clearance (+29%, indicating increased estimated glomerular filtration rate). In contrast, females that were born small had increased homeostatic model assessment-insulin resistance (+54%), increased water intake (+23%), urine output (+44%) and elevated systolic blood pressure (+7%) regardless of exposure to stress. Our findings suggest that low maternal birth weight and maternal stress exposure during pregnancy are both independently detrimental for long-term adrenal, metabolic and cardio-renal health of the mother, although their effects were not exacerbated.
  • Item
    No Preview Available
    Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats
    Tran, M ; Gallo, LA ; Hanvey, AN ; Jefferies, AJ ; Westcott, KT ; Cullen-McEwen, LA ; Gardner, DK ; Moritz, KM ; Wlodek, ME (AMER PHYSIOLOGICAL SOC, 2014-04)
    Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes.
  • Item
    No Preview Available
    Transgenerational metabolic outcomes associated with uteroplacental insufficiency
    Tran, M ; Gallo, LA ; Jefferies, AJ ; Moritz, KM ; Wlodek, ME (BIOSCIENTIFICA LTD, 2013-04)
    Intrauterine growth restriction increases adult metabolic disease risk with evidence to suggest that suboptimal conditions in utero can have transgenerational effects. We determined whether impaired glucose tolerance, reduced insulin secretion, and pancreatic deficits are evident in second-generation (F2) male and female offspring from growth-restricted mothers, in a rat model of uteroplacental insufficiency. Late gestation uteroplacental insufficiency was induced by bilateral uterine vessel ligation (restricted) or sham surgery (control) in Wistar-Kyoto rats. First-generation (F1) control and restricted females were mated with normal males and F2 offspring studied at postnatal day 35 and at 6 and 12 months. F2 glucose tolerance, insulin secretion, and sensitivity were assessed at 6 and 12 months and pancreatic morphology was quantified at all study ages. At 6 months, F2 restricted male offspring exhibited blunted first-phase insulin response (-35%), which was associated with reduced pancreatic β-cell mass (-29%). By contrast, F2 restricted females had increased β-cell mass despite reduced first-phase insulin response (-38%). This was not associated with any changes in plasma estradiol concentrations. Regardless of maternal birth weight, F2 control and restricted males had reduced homeostatic model assessment of insulin resistance and elevated plasma triglyceride concentrations at 6 months and reduced whole-body insulin sensitivity at 6 and 12 months compared with females. We report that low maternal birth weight is associated with reduced first-phase insulin response and gender-specific differences in pancreatic morphology in the F2. Further studies will define the mode(s) of disease transmission, including direct insults to developing gametes, adverse maternal responses to pregnancy, or inherited mechanisms.