Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity
    Hardee, JP ; Martins, KJB ; Miotto, PM ; Ryall, JG ; Gehrig, SM ; Reljic, B ; Naim, T ; Chung, JD ; Trieu, J ; Swiderski, K ; Philp, AM ; Philp, A ; Watt, MJ ; Stroud, DA ; Koopman, R ; Steinberg, GR ; Lynch, GS (ELSEVIER, 2021-01-12)
    OBJECTIVES: Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategies requires understanding currently unknown biological roles for dystrophin and utrophin in dystrophic muscle adaptation and plasticity. METHODS: Combining whole transcriptome RNA sequencing and mitochondrial proteomics with assessments of metabolic and contractile function, we investigated the roles of dystrophin and utrophin in fast-to-slow muscle remodeling with low-frequency electrical stimulation (LFS, 10 Hz, 12 h/d, 7 d/wk, 28 d) in mdx (dystrophin null) and dko (dystrophin/utrophin null) mice, two established preclinical models of DMD. RESULTS: Novel biological roles in adaptation were demonstrated by impaired transcriptional activation of estrogen-related receptor alpha-responsive genes supporting oxidative phosphorylation in dystrophic muscles. Further, utrophin expression in dystrophic muscles was required for LFS-induced remodeling of mitochondrial respiratory chain complexes, enhanced fiber respiration, and conferred protection from eccentric contraction-mediated damage. CONCLUSIONS: These findings reveal novel roles for dystrophin and utrophin during LFS-induced metabolic remodeling of dystrophic muscle and highlight the therapeutic potential of LFS to ameliorate the dystrophic pathology and protect from contraction-induced injury with important implications for DMD and related muscle disorders.
  • Item
    Thumbnail Image
    Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury
    Swiderski, K ; Caldow, MK ; Naim, T ; Trieu, J ; Chee, A ; Koopman, R ; Lynch, GS ; Alway, SE (PUBLIC LIBRARY SCIENCE, 2019-02-27)
    Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.
  • Item
    Thumbnail Image
    Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation
    Swiderski, K ; Bindon, R ; Trieu, J ; Naim, T ; Schokman, S ; Swaminathan, M ; Leembruggen, AJL ; Hill-Yardin, EL ; Koopman, R ; Bornstein, JC ; Lynch, GS (KOREAN SOC NEUROGASTROENTEROLOGY & MOTILITY, 2020-01-01)
    BACKGROUND/AIMS: Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. METHODS: Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. RESULTS: ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. CONCLUSIONS: GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.
  • Item
    Thumbnail Image
    HSP70 drives myoblast fusion during C2C12 myogenic differentiation
    Thakur, SS ; Swiderski, K ; Chhen, VL ; James, JL ; Cranna, NJ ; Islam, AMT ; Ryall, JG ; Lynch, GS (COMPANY BIOLOGISTS LTD, 2020-07-01)
    In response to injury, skeletal muscle stem cells (MuSCs) undergo myogenesis where they become activated, proliferate rapidly, differentiate and undergo fusion to form multinucleated myotubes. Dramatic changes in cell size, shape, metabolism and motility occur during myogenesis, which cause cellular stress and alter proteostasis. The molecular chaperone heat shock protein 70 (HSP70) maintains proteostasis by regulating protein biosynthesis and folding, facilitating transport of polypeptides across intracellular membranes and preventing stress-induced protein unfolding/aggregation. Although HSP70 overexpression can exert beneficial effects in skeletal muscle diseases and enhance skeletal muscle repair after injury, its effect on myogenesis has not been investigated. Plasmid-mediated overexpression of HSP70 did not affect the rate of C2C12 proliferation or differentiation, but the median number of myonuclei per myotube and median myotube width in differentiated C2C12 myotubes were increased with HSP70 overexpression. These findings reveal that increased HSP70 expression can promote myoblast fusion, identifying a mechanism for its therapeutic potential to enhance muscle repair after injury.This article has an associated First Person interview with the first author of the paper.
  • Item
    Thumbnail Image
    Muscle-specific deletion of SOCS3 does not reduce the anabolic response to leucine in a mouse model of acute inflammation
    Caldow, MK ; Ham, DJ ; Chee, A ; Trieu, J ; Naim, T ; Stapleton, DI ; Swiderski, K ; Lynch, GS ; Koopman, R (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2017-08-01)
    Excessive inflammation reduces skeletal muscle protein synthesis leading to wasting and weakness. The janus kinase/signal transducers and activators of transcription-3 (JAK/STAT3) pathway is important for the regulation of inflammatory signaling. As such, suppressor of cytokine signaling-3 (SOCS3), the negative regulator of JAK/STAT signaling, is thought to be important in the control of muscle homeostasis. We hypothesized that muscle-specific deletion of SOCS3 would impair the anabolic response to leucine during an inflammatory insult. Twelve week old (n=8 per group) SOCS3 muscle-specific knockout mice (SOCS3-MKO) and littermate controls (WT) were injected with lipopolysaccharide (LPS, 1mg/kg) or saline and were studied during fasted conditions or after receiving 0.5g/kg leucine 3h after the injection of LPS. Markers of inflammation, anabolic signaling, and protein synthesis were measured 4h after LPS injection. LPS injection robustly increased mRNA expression of inflammatory molecules (Socs3, Socs1, Il-6, Ccl2, Tnfα and Cd68). In muscles from SOCS3-MKO mice, the Socs3 mRNA response to LPS was significantly blunted (∼6-fold) while STAT3 Tyr705 phosphorylation was exacerbated (18-fold). Leucine administration increased protein synthesis in both WT (∼1.6-fold) and SOCS3-MKO mice (∼1.5-fold) compared to basal levels. LPS administration blunted this effect, but there were no differences between WT and SOCS3-MKO mice. Muscle-specific SOCS3 deletion did not alter the response of AKT, mTOR, S6 or 4EBP1 under any treatment conditions. Therefore, SOCS3 does not appear to mediate the early inflammatory or leucine-induced changes in protein synthesis in skeletal muscle.
  • Item
    Thumbnail Image
    Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology
    Swiderski, K ; Martins, KJB ; Chee, A ; Trieu, J ; Naim, T ; Gehrig, SM ; Baum, DM ; Brenmoehl, J ; Chau, L ; Koopman, R ; Gregorevic, P ; Metzger, F ; Hoeflich, A ; Lynch, GS (CHURCHILL LIVINGSTONE, 2016-10-01)
    OBJECTIVE: The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. DESIGN: 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. RESULTS: AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. CONCLUSIONS: Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation.
  • Item
    No Preview Available
    Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice
    Murphy, KT ; Chee, A ; Gleeson, BG ; Naim, T ; Swiderski, K ; Koopman, R ; Lynch, GS (AMER PHYSIOLOGICAL SOC, 2011-09-01)
    Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg⁻¹·wk⁻¹, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8-10% (P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment (P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection (P < 0.05) but was not improved with PF-354 treatment (P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively (P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.
  • Item
    Thumbnail Image
    Tranilast administration reduces fibrosis and improves fatigue resistance in muscles of mdx dystrophic mice
    Swiderski, K ; Todorov, M ; Gehrig, SM ; Naim, T ; Chee, A ; Stapleton, DI ; Koopman, R ; Lynch, GS (BMC, 2014-01-01)
    BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pharmacological, cell- and gene-based therapies. Novel treatments that can prevent or attenuate fibrosis have important clinical merit for DMD and related neuromuscular diseases. We investigated the therapeutic potential for tranilast, an orally bioavailable anti-allergic agent, to prevent fibrosis in skeletal muscles of mdx dystrophic mice. RESULTS: Three-week-old C57Bl/10 and mdx mice received tranilast (~300 mg/kg) in their food for 9 weeks, after which fibrosis was assessed through histological analyses, and functional properties of tibialis anterior muscles were assessed in situ and diaphragm muscle strips in vitro. Tranilast administration did not significantly alter the mass of any muscles in control or mdx mice, but it decreased fibrosis in the severely affected diaphragm muscle by 31% compared with untreated mdx mice (P < 0.05). A similar trend of decreased fibrosis was observed in the tibialis anterior muscles of mdx mice (P = 0.10). These reductions in fibrotic deposition were not associated with improvements in maximum force-producing capacity, but we did observe small but significant improvements in the resistance to fatigue in both the diaphragm and TA muscles of mdx mice treated with tranilast. CONCLUSION: Together these findings demonstrate that administration of potent antifibrotic compounds such as tranilast could help preserve skeletal muscle structure, which could ultimately increase the efficacy of pharmacological, cell and gene replacement/correction therapies for muscular dystrophy and related disorders.
  • Item
    No Preview Available
    BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle
    Kennedy, TL ; Swiderski, K ; Murphy, KT ; Gehrig, SM ; Curl, CL ; Chandramouli, C ; Febbraio, MA ; Delbridge, LMD ; Koopman, R ; Lynch, GS (ELSEVIER SCIENCE INC, 2016-12-01)
    Duchenne muscular dystrophy is a severe and progressive striated muscle wasting disorder that leads to premature death from respiratory and/or cardiac failure. We have previously shown that treatment of young dystrophic mdx and dystrophin/utrophin null (dko) mice with BGP-15, a coinducer of heat shock protein 72, ameliorated the dystrophic pathology. We therefore tested the hypothesis that later-stage BGP-15 treatment would similarly benefit older mdx and dko mice when the dystrophic pathology was already well established. Later stage treatment of mdx or dko mice with BGP-15 did not improve maximal force of tibialis anterior (TA) muscles (in situ) or diaphragm muscle strips (in vitro). However, collagen deposition (fibrosis) was reduced in TA muscles of BGP-15-treated dko mice but unchanged in TA muscles of treated mdx mice and diaphragm of treated mdx and dko mice. We also examined whether BGP-15 treatment could ameliorate aspects of the cardiac pathology, and in young dko mice it reduced collagen deposition and improved both membrane integrity and systolic function. These results confirm BGP-15's ability to improve aspects of the dystrophic pathology but with differing efficacies in heart and skeletal muscles at different stages of the disease progression. These findings support a role for BGP-15 among a suite of pharmacological therapies for Duchenne muscular dystrophy and related disorders.
  • Item
    Thumbnail Image
    Ageing prolongs inflammatory marker expression in regenerating rat skeletal muscles after injury
    van der Poel, C ; Gosselin, LE ; Schertzer, JD ; Ryall, JG ; Swiderski, K ; Wondemaghen, M ; Lynch, GS (BIOMED CENTRAL LTD, 2011-12-29)
    BACKGROUND: Some of the most serious consequences of normal ageing relate to its effects on skeletal muscle, particularly significant wasting and associated weakness, termed "sarcopenia". The underlying mechanisms of sarcopenia have yet to be elucidated completely but an altered muscle inflammatory response after injury is a likely contributing factor. In this study we investigated age-related changes in the expression of numerous inflammatory markers linked to successful muscle regeneration. METHODS: Right extensor digitorum longus (EDL) muscles from young (3 month), adult (12 month) and old (24 month) male F344 rats were injected with bupivacaine hydrochloride to cause complete muscle fibre degeneration, then excised 12, 24, 36, and 72 hours later (n = 5/age group/time point). We used qRT-PCR to quantify the mRNA expression levels of the inflammatory markers TNFα, IFNγ, IL1, IL18, IL6, and CD18 as well as regenerative markers MyoD and myogenin. RESULTS: Inflammatory markers were all increased significantly in all age groups after myotoxic injury. There was a trend for expression of inflammatory markers to be higher in uninjured muscles of old rats, especially at 72 hours post injury where the expression levels of several markers was significantly higher in old compared with young and adult rats. There was also a decrease in the expression of regenerative markers in old rats at 72 hours post injury. CONCLUSION: Our findings identify a prolonged inflammatory signature in injured muscles from old compared with young and adult rats together with a blunted expression of key markers of regeneration in muscles of old rats. Importantly, our findings identify potential targets for future therapeutic strategies for improving the regenerative capacity of skeletal muscle during ageing.