Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice.
    Borghgraef, P ; Menuet, C ; Theunis, C ; Louis, JV ; Devijver, H ; Maurin, H ; Smet-Nocca, C ; Lippens, G ; Hilaire, G ; Gijsen, H ; Moechars, D ; Van Leuven, F ; Ikezu, T (Public Library of Science (PLoS), 2013)
    The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.
  • Item
    Thumbnail Image
    Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice.
    Voituron, N ; Shvarev, Y ; Menuet, C ; Bevengut, M ; Fasano, C ; Vigneault, E ; El Mestikawy, S ; Hilaire, G ; Morty, RE (Public Library of Science (PLoS), 2010-10-26)
    BACKGROUND: To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response. METHODOLOGY/PRINCIPAL FINDINGS: Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25-50 µM, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice. CONCLUSIONS: These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers.
  • Item
    Thumbnail Image
    Age-Related Impairment of Ultrasonic Vocalization in Tau.P301L Mice: Possible Implication for Progressive Language Disorders
    Menuet, C ; Cazals, Y ; Gestreau, C ; Borghgraef, P ; Gielis, L ; Dutschmann, M ; Van Leuven, F ; Hilaire, G ; Gotz, J (PUBLIC LIBRARY SCIENCE, 2011-10-12)
    BACKGROUND: Tauopathies, including Alzheimer's Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects. METHODOLOGY/PRINCIPAL FINDINGS: At age 4-5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8-10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice. CONCLUSIONS: In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy.
  • Item
    Thumbnail Image
    PreBotzinger complex neurons drive respiratory modulation of blood pressure and heart rate
    Menuet, C ; Connelly, AA ; Bassi, JK ; Melo, MR ; Le, S ; Kamar, J ; Kumar, NN ; McDougall, SJ ; McMullan, S ; Allen, AM (ELIFE SCIENCES PUBLICATIONS LTD, 2020-06-15)
    Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.
  • Item
    Thumbnail Image
    Baroreceptor reflex control of heart rate in angiotensin type 1A receptor knockout mice
    Choong, Y-T ; Menuet, C ; Jancovski, N ; Allen, AM (WILEY, 2013-11)
    The baroreceptor reflex dampens the short-term fluctuations in blood pressure by feedback modulation of heart rate (HR) and vascular resistance. Impairment of this reflex has been observed in hypertension and heart failure. Angiotensin II, a blood borne hormone, acts via its type 1A receptor to attenuate the baroreceptor reflex and this reflex is reported to be dramatically altered in angiotensin type 1A receptor knockout mice. This study sought to further investigate changes in the arterial and cardiopulmonary baroreceptor reflex control of HR in angiotensin II type 1A receptor knocked out mice. In artificially ventilated, isoflurane anesthetized mice, the arterial and cardiopulmonary baroreceptor reflexes were activated via injection or slow infusions, respectively, of phenylephrine and sodium nitroprusside through the jugular vein. We observed no impairment of either the arterial or cardiopulmonary baroreceptor reflex control of HR in angiotensin type 1A receptor knockout mice.
  • Item
    Thumbnail Image
    Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas
    Dempsey, B ; Le, S ; Turner, A ; Bokiniec, P ; Ramadas, R ; Bjaalie, JG ; Menuet, C ; Neve, R ; Allen, AM ; Goodchild, AK ; McMullan, S (FRONTIERS MEDIA SA, 2017-03-01)
    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88-94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.
  • Item
    No Preview Available
    Stimulation of Angiotensin Type 1A Receptors on Catecholaminergic Cells Contributes to Angiotensin-Dependent Hypertension
    Jancovski, N ; Bassi, JK ; Carter, DA ; Choong, Y-T ; Connelly, A ; Thu-Phuc, N ; Chen, D ; Lukoshkova, EV ; Menuet, C ; Head, GA ; Allen, AM (LIPPINCOTT WILLIAMS & WILKINS, 2013-11)
    Hypertension contributes to multiple forms of cardiovascular disease and thus morbidity and mortality. The mechanisms inducing hypertension remain unclear although the involvement of homeostatic systems, such as the renin-angiotensin and sympathetic nervous systems, is established. A pivotal role of the angiotensin type 1 receptor in the proximal tubule of the kidney for the development of experimental hypertension is established. Yet, other systems are involved. This study tests whether the expression of angiotensin type 1A receptors in catecholaminergic cells contributes to hypertension development. Using a Cre-lox approach, we deleted the angiotensin type 1A receptor from all catecholaminergic cells. This deletion did not alter basal metabolism or blood pressure but delayed the onset of angiotensin-dependent hypertension and reduced the maximal response. Cardiac hypertrophy was also reduced. The knockout mice showed attenuated activation of the sympathetic nervous system during angiotensin II infusion as measured by spectral analysis of the blood pressure. Increased reactive oxygen species production was observed in forebrain regions, including the subfornical organ, of the knockout mouse but was markedly reduced in the rostral ventrolateral medulla. These studies demonstrate that stimulation of the angiotensin type 1A receptor on catecholaminergic cells is required for the full development of angiotensin-dependent hypertension and support an important role for the sympathetic nervous system in this model.