Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    Thumbnail Image
    Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry
    Nelson, ME ; Parker, BL ; Burchfield, JG ; Hoffman, NJ ; Needham, EJ ; Cooke, KC ; Naim, T ; Sylow, L ; Ling, NXY ; Francis, D ; Norris, DM ; Chaudhuri, R ; Oakhill, JS ; Richter, EA ; Lynch, GS ; Stockli, J ; James, DE (WILEY, 2019-12-16)
    Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.
  • Item
    Thumbnail Image
    Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity
    Hardee, JP ; Martins, KJB ; Miotto, PM ; Ryall, JG ; Gehrig, SM ; Reljic, B ; Naim, T ; Chung, JD ; Trieu, J ; Swiderski, K ; Philp, AM ; Philp, A ; Watt, MJ ; Stroud, DA ; Koopman, R ; Steinberg, GR ; Lynch, GS (ELSEVIER, 2021-03)
    OBJECTIVES: Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategies requires understanding currently unknown biological roles for dystrophin and utrophin in dystrophic muscle adaptation and plasticity. METHODS: Combining whole transcriptome RNA sequencing and mitochondrial proteomics with assessments of metabolic and contractile function, we investigated the roles of dystrophin and utrophin in fast-to-slow muscle remodeling with low-frequency electrical stimulation (LFS, 10 Hz, 12 h/d, 7 d/wk, 28 d) in mdx (dystrophin null) and dko (dystrophin/utrophin null) mice, two established preclinical models of DMD. RESULTS: Novel biological roles in adaptation were demonstrated by impaired transcriptional activation of estrogen-related receptor alpha-responsive genes supporting oxidative phosphorylation in dystrophic muscles. Further, utrophin expression in dystrophic muscles was required for LFS-induced remodeling of mitochondrial respiratory chain complexes, enhanced fiber respiration, and conferred protection from eccentric contraction-mediated damage. CONCLUSIONS: These findings reveal novel roles for dystrophin and utrophin during LFS-induced metabolic remodeling of dystrophic muscle and highlight the therapeutic potential of LFS to ameliorate the dystrophic pathology and protect from contraction-induced injury with important implications for DMD and related muscle disorders.
  • Item
    Thumbnail Image
    Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity
    Jorgensen, SB ; O'Neill, HM ; Sylow, L ; Honeyman, J ; Hewitt, KA ; Palanivel, R ; Fullerton, MD ; Oberg, L ; Balendran, A ; Galic, S ; van der Poel, C ; Trounce, IA ; Lynch, GS ; Schertzer, JD ; Steinberg, GR (AMER DIABETES ASSOC, 2013-01)
    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance.
  • Item
    Thumbnail Image
    G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle (vol 5, 170, 2014)
    Wright, CR ; Brown, EL ; Della-Gatta, PA ; Ward, AC ; Lynch, GS ; Russell, AP (FRONTIERS MEDIA SA, 2017-10-30)
    [This corrects the article on p. 170 in vol. 5, PMID: 24822049.].
  • Item
    Thumbnail Image
    First person – Savant Thakur
    Lynch, GS (The Company of Biologists, 2020-01-01)
    ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Biology Open. Savant Thakur is first author on ‘HSP70 drives myoblast fusion during C2C12 myogenic differentiation’, published in BiO. Savant was a Ph.D. student in the lab of Professor Gordon S. Lynch at the Centre for Muscle Research, Department of Physiology, The University of Melbourne, working towards understanding the mechanisms of defective muscle repair in muscle diseases and wasting disorders. Sadly, Savant passed away on June 16, 2019 and so one of his supervisors, Professor Lynch, spoke to BiO about Savant's work and character.
  • Item
    Thumbnail Image
    Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury
    Swiderski, K ; Caldow, MK ; Naim, T ; Trieu, J ; Chee, A ; Koopman, R ; Lynch, GS ; Alway, SE (PUBLIC LIBRARY SCIENCE, 2019-02-27)
    Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.
  • Item
    Thumbnail Image
    The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation
    Nguyen, JH ; Chung, JD ; Lynch, GS ; Ryall, JG (FRONTIERS MEDIA SA, 2019-10-29)
    Skeletal muscle has a remarkable capacity to regenerate following injury, a property conferred by a resident population of muscle stem cells (MuSCs). In response to injury, MuSCs must double their cellular content to divide, a process requiring significant new biomass in the form of nucleotides, phospholipids, and amino acids. This new biomass is derived from a series of intracellular metabolic cycles and alternative routing of carbon. In this review, we examine the link between metabolism and skeletal muscle regeneration with particular emphasis on the role of the cellular microenvironment in supporting the production of new biomass and MuSC proliferation.
  • Item
    Thumbnail Image
    Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation
    Swiderski, K ; Bindon, R ; Trieu, J ; Naim, T ; Schokman, S ; Swaminathan, M ; Leembruggen, AJL ; Hill-Yardin, EL ; Koopman, R ; Bornstein, JC ; Lynch, GS (KOREAN SOC NEUROGASTROENTEROLOGY & MOTILITY, 2020-01)
    BACKGROUND/AIMS: Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. METHODS: Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. RESULTS: ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. CONCLUSIONS: GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.
  • Item
    Thumbnail Image
    Glycine administration attenuates progression of dystrophic pathology in prednisolone-treated dystrophin/utrophin null mice
    Ham, DJ ; Gardner, A ; Kennedy, TL ; Trieu, J ; Naim, T ; Chee, A ; Alves, FM ; Caldow, MK ; Lynch, GS ; Koopman, R (NATURE PUBLISHING GROUP, 2019-09-10)
    Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.
  • Item
    Thumbnail Image
    HSP70 drives myoblast fusion during C2C12 myogenic differentiation
    Thakur, SS ; Swiderski, K ; Chhen, VL ; James, JL ; Cranna, NJ ; Islam, AMT ; Ryall, JG ; Lynch, GS (COMPANY BIOLOGISTS LTD, 2020-07)
    In response to injury, skeletal muscle stem cells (MuSCs) undergo myogenesis where they become activated, proliferate rapidly, differentiate and undergo fusion to form multinucleated myotubes. Dramatic changes in cell size, shape, metabolism and motility occur during myogenesis, which cause cellular stress and alter proteostasis. The molecular chaperone heat shock protein 70 (HSP70) maintains proteostasis by regulating protein biosynthesis and folding, facilitating transport of polypeptides across intracellular membranes and preventing stress-induced protein unfolding/aggregation. Although HSP70 overexpression can exert beneficial effects in skeletal muscle diseases and enhance skeletal muscle repair after injury, its effect on myogenesis has not been investigated. Plasmid-mediated overexpression of HSP70 did not affect the rate of C2C12 proliferation or differentiation, but the median number of myonuclei per myotube and median myotube width in differentiated C2C12 myotubes were increased with HSP70 overexpression. These findings reveal that increased HSP70 expression can promote myoblast fusion, identifying a mechanism for its therapeutic potential to enhance muscle repair after injury.This article has an associated First Person interview with the first author of the paper.