Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance
    Boon, J ; Hoy, AJ ; Stark, R ; Brown, RD ; Meex, RC ; Henstridge, DC ; Schenk, S ; Meikle, PJ ; Horowitz, JF ; Kingwell, BA ; Bruce, CR ; Watt, MJ (AMER DIABETES ASSOC, 2013-02)
    Dysregulated lipid metabolism and inflammation are linked to the development of insulin resistance in obesity, and the intracellular accumulation of the sphingolipid ceramide has been implicated in these processes. Here, we explored the role of circulating ceramide on the pathogenesis of insulin resistance. Ceramide transported in LDL is elevated in the plasma of obese patients with type 2 diabetes and correlated with insulin resistance but not with the degree of obesity. Treating cultured myotubes with LDL containing ceramide promoted ceramide accrual in cells and was accompanied by reduced insulin-stimulated glucose uptake, Akt phosphorylation, and GLUT4 translocation compared with LDL deficient in ceramide. LDL-ceramide induced a proinflammatory response in cultured macrophages via toll-like receptor-dependent and -independent mechanisms. Finally, infusing LDL-ceramide into lean mice reduced insulin-stimulated glucose uptake, and this was due to impaired insulin action specifically in skeletal muscle. These newly identified roles of LDL-ceramide suggest that strategies aimed at reducing hepatic ceramide production or reducing ceramide packaging into lipoproteins may improve skeletal muscle insulin action.
  • Item
    Thumbnail Image
    Pigment Epithelium-Derived Factor Regulates Lipid Metabolism via Adipose Triglyceride Lipase
    Borg, ML ; Andrews, ZB ; Duh, EJ ; Zechner, R ; Meikle, PJ ; Watt, MJ (AMER DIABETES ASSOC, 2011-05)
    OBJECTIVE: Pigment epithelium-derived factor (PEDF) is an adipocyte-secreted factor involved in the development of insulin resistance in obesity. Previous studies have identified PEDF as a regulator of triacylglycerol metabolism in the liver that may act through adipose triglyceride lipase (ATGL). We used ATGL(-/-) mice to determine the role of PEDF in regulating lipid and glucose metabolism. RESEARCH DESIGN AND METHODS: Recombinant PEDF was administered to ATGL(-/-) and wild-type mice, and whole-body energy metabolism was studied by indirect calorimetry. Adipose tissue lipolysis and skeletal muscle fatty acid metabolism was determined in isolated tissue preparations. Muscle lipids were assessed by electrospray ionization-tandem mass spectrometry. Whole-body insulin sensitivity and skeletal muscle glucose uptake were assessed. RESULTS: PEDF impaired the capacity to adjust substrate selection, resulting in a delayed diurnal decline in the respiratory exchange ratio, and suppressed daily fatty acid oxidation. PEDF enhanced adipocyte lipolysis and triacylglycerol lipase activity in skeletal muscle. Muscle fatty acid uptake and storage were unaffected, whereas fatty acid oxidation was impaired. These changes in lipid metabolism were abrogated in ATGL(-/-) mice and were not attributable to hypothalamic actions. ATGL(-/-) mice were also refractory to PEDF-mediated insulin resistance, but this was not related to changes in lipid species in skeletal muscle. CONCLUSIONS: The results are the first direct demonstration that 1) PEDF influences systemic fatty acid metabolism by promoting lipolysis in an ATGL-dependent manner and reducing fatty acid oxidation and 2) ATGL is required for the negative effects of PEDF on insulin action.
  • Item
    Thumbnail Image
    PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle
    Mason, RR ; Mokhtar, R ; Matzaris, M ; Selathurai, A ; Kowalski, GM ; Mokbel, N ; Meikle, PJ ; Bruce, CR ; Watt, MJ (ELSEVIER, 2014-09)
    Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.