Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet-Induced Insulin Resistance
    Bruce, CR ; Hoy, AJ ; Turner, N ; Watt, MJ ; Allen, TL ; Carpenter, K ; Cooney, GJ ; Febbraio, MA ; Kraegen, EW (AMER DIABETES ASSOC, 2009-03)
    OBJECTIVE: Skeletal muscle insulin resistance is associated with lipid accumulation, but whether insulin resistance is due to reduced or enhanced flux of long-chain fatty acids into the mitochondria is both controversial and unclear. We hypothesized that skeletal muscle-specific overexpression of the muscle isoform of carnitine palmitoyltransferase 1 (CPT1), the enzyme that controls the entry of long-chain fatty acyl CoA into mitochondria, would enhance rates of fatty acid oxidation and improve insulin action in muscle in high-fat diet insulin-resistant rats. RESEARCH DESIGN AND METHODS: Rats were fed a standard (chow) or high-fat diet for 4 weeks. After 3 weeks, in vivo electrotransfer was used to overexpress the muscle isoform of CPT1 in the distal hindlimb muscles (tibialis anterior and extensor digitorum longus [EDL]). Skeletal muscle insulin action was examined in vivo during a hyperinsulinemic-euglycemic clamp. RESULTS: In vivo electrotransfer produced a physiologically relevant increase of approximately 20% in enzyme activity; and although the high-fat diet produced insulin resistance in the sham-treated muscle, insulin action was improved in the CPT1-overexpressing muscle. This improvement was associated with a reduction in triacylglycerol content, the membrane-to-cytosolic ratio of diacylglycerol, and protein kinase C theta activity. Importantly, overexpression of CPT1 did not affect markers of mitochondrial capacity or function, nor did it alter skeletal muscle acylcarnitine profiles irrespective of diet. CONCLUSIONS: Our data provide clear evidence that a physiological increase in the capacity of long-chain fatty acyl CoA entry into mitochondria is sufficient to ameliorate lipid-induced insulin resistance in muscle.
  • Item
    Thumbnail Image
    Insulin Resistance and Altered Systemic Glucose Metabolism in Mice Lacking Nur77
    Chao, LC ; Wroblewski, K ; Zhang, Z ; Pei, L ; Vergnes, L ; Ilkayeva, OR ; Ding, SY ; Reue, K ; Watt, MJ ; Newgard, CB ; Pilch, PF ; Hevener, AL ; Tontonoz, P (AMER DIABETES ASSOC, 2009-12)
    OBJECTIVE: Nur77 is an orphan nuclear receptor with pleotropic functions. Previous studies have identified Nur77 as a transcriptional regulator of glucose utilization genes in skeletal muscle and gluconeogenesis in liver. However, the net functional impact of these pathways is unknown. To examine the consequence of Nur77 signaling for glucose metabolism in vivo, we challenged Nur77 null mice with high-fat feeding. RESEARCH DESIGN AND METHODS: Wild-type and Nur77 null mice were fed a high-fat diet (60% calories from fat) for 3 months. We determined glucose tolerance, tissue-specific insulin sensitivity, oxygen consumption, muscle and liver lipid content, muscle insulin signaling, and expression of glucose and lipid metabolism genes. RESULTS: Mice with genetic deletion of Nur77 exhibited increased susceptibility to diet-induced obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp studies revealed greater high-fat diet-induced insulin resistance in both skeletal muscle and liver of Nur77 null mice compared with controls. Loss of Nur77 expression in skeletal muscle impaired insulin signaling and markedly reduced GLUT4 protein expression. Muscles lacking Nur77 also exhibited increased triglyceride content and accumulation of multiple even-chained acylcarnitine species. In the liver, Nur77 deletion led to hepatic steatosis and enhanced expression of lipogenic genes, likely reflecting the lipogenic effect of hyperinsulinemia. CONCLUSIONS: Collectively, these data demonstrate that loss of Nur77 influences systemic glucose metabolism and highlight the physiological contribution of muscle Nur77 to this regulatory pathway.
  • Item
    Thumbnail Image
    Fat Partitioning and Insulin Sensitivity Robbing Peter to Pay Paul?
    Watt, MJ ; Kraegen, EW (AMER DIABETES ASSOC, 2009-01)