Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis
    Kan, LK ; Drummond, K ; Hunn, M ; Williams, D ; O'Brien, TJ ; Monif, M (BMJ PUBLISHING GROUP, 2020-08)
    Gliomas are the most common central nervous system malignancies and present with significant morbidity and mortality. Treatment modalities are currently limited to surgical resection, chemotherapy and radiotherapy. Increases in survival rate over the previous decades are negligible, further pinpointing an unmet clinical need in this field. There is a continual struggle with the development of effective glioma diagnostics and therapeutics, largely due to a multitude of factors, including the presence of the blood-brain barrier and significant intertumoural and intratumoural heterogeneity. Importantly, there is a lack of reliable biomarkers for glioma, particularly in aiding tumour subtyping and measuring response to therapy. There is a need for biomarkers that would both overcome the complexity of the disease and allow for a minimally invasive means of detection and analysis. This is a comprehensive review evaluating the potential of current cellular, proteomic and molecular biomarker candidates for glioma. Significant hurdles faced in glioma diagnostics and therapy are also discussed here.
  • Item
    Thumbnail Image
    Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells
    Drill, M ; Powell, KL ; Kan, LK ; Jones, NC ; O'Brien, TJ ; Hamilton, JA ; Monif, M (NATURE RESEARCH, 2020-09-09)
    Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12–15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.
  • Item
    Thumbnail Image
    A Simple and Reliable Protocol for the Preparation and Culturing of Fresh Surgically Resected Human Glioblastoma Tissue
    Kan, LK ; Drummond, KJ ; Hunn, M ; Williams, DA ; O'Brien, TJ ; Monif, M (MDPI, 2020-03)
    Glioblastoma is a heterogeneous glial cell malignancy with extremely high morbidity and mortality. Current treatment is limited and provide minimal therapeutic efficacy. Previous studies were reliant on cell lines that do not accurately reflect the heterogeneity of the glioma microenvironment. Developing reliable models of human glioblastoma is therefore essential. Direct culture of human brain tumours is often difficult and there is a limited number of protocols available. Hence, we have developed an effective method for the primary culture of human glioblastoma samples obtained during surgical resection. Culturing tumour tissue direct from human brain is advantageous in that cultures (1) more closely resemble true human disease, relative to the use of cell lines; (2) comprise a range of cellular components present in the natural tumour microenvironment; and (3) are free of added antibodies and reagents. Additionally, primary glioblastoma cultures are valuable in studies examining the effects of anti-cancer pharmaceuticals and therapeutic agents, and can be further used in live cell imaging, immunocytochemistry, flow cytometry and immunoassay experiments. Via this protocol, cells are maintained in supplemented medium at 37 °C (5% CO2) and are expected to achieve sufficient confluency within 7 days of initial culture.
  • Item
    Thumbnail Image
    Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore
    Monif, M ; Reid, CA ; Powell, KL ; Drummond, KJ ; O'Brien, TJ ; Williams, DA (BIOMED CENTRAL LTD, 2016-06-30)
    BACKGROUND: Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. METHODS: Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. RESULTS: P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. CONCLUSIONS: IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions.