Physiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Normal lactational environment restores cardiomyocyte number after uteroplacental insufficiency: implications for the preterm neonate
    Black, MJ ; Siebel, AL ; Gezmish, O ; Moritz, KM ; Wlodek, ME (AMER PHYSIOLOGICAL SOC, 2012-05)
    A reduced complement of cardiomyocytes in early life can adversely affect life-long cardiac functional reserve. In the present study, using a cross-fostering approach in rats, we examined the contributions of the prenatal and postnatal environments in the programming of cardiomyocyte growth. Rat dams underwent either bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation. One day after birth, Control and Restricted pups were cross-fostered onto Control (normal lactation) or Restricted (impaired lactation due to impaired mammary gland formation) mothers. In male offspring, genes involved in cardiomyocyte differentiation, proliferation, hypertrophy and apoptosis were examined at gestational day 20 and postnatal days 1 and 7 to assess effects on cardiomyocyte growth. At postnatal day 7 cardiomyocyte number was determined stereologically. Offspring were examined at age 6 mo for evidence of hypertension and pathological cardiac gene expression. There was an increase in Igf1 and Igf2 mRNA expression in hearts of Restricted pups at gestational day 20. At postnatal day 7, Agtr1a and Agtr1b mRNA expression as well as Bcl2 and Cmyc were elevated in all hearts from offspring that were prenatally or postnatally growth restricted. There was a significant reduction (-29%) in cardiomyocyte number in the Restricted-on-Restricted group. Importantly, this deficit was prevented by optimization of postnatal nutrition (in the Restricted-on-Control group). At 6 mo, blood pressure was significantly elevated in the Restricted-on-Restricted group, but there was no difference in expression of the cardiac hypertrophy, remodeling or angiogenic genes across groups. In conclusion, the findings reveal a critical developmental window, when cardiomyocytes are still proliferating, whereby improved neonatal nutrition has the capacity to restore cardiomyocyte number to normal levels. These findings are of particular relevance to the preterm infant who is born at a time when cardiomyocytes are immature and still dividing.
  • Item
    No Preview Available
    Cardio-renal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second generation fetal growth
    Gallo, LA ; Tran, M ; Moritz, KM ; Mazzuca, MQ ; Parry, LJ ; Westcott, KT ; Jefferies, AJ ; Cullen-McEwen, LA ; Wlodek, ME (WILEY, 2012-02)
    Intrauterine growth restriction caused by uteroplacental insufficiency increases risk of cardiovascular and metabolic disease in offspring. Cardio-renal and metabolic responses to pregnancy are critical determinants of immediate and long-term maternal health. However, no studies to date have investigated the renal and metabolic adaptations in growth restricted offspring when they in turn become pregnant. We hypothesised that the physiological challenge of pregnancy in growth restricted females exacerbates disease outcome and compromises next generation fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation in WKY rats and F1 female offspring birth and postnatal body weights were recorded. F1 Control and Restricted females were mated at 4 months and blood pressure, renal and metabolic parameters were measured in late pregnancy and F2 fetal and placental weights recorded. Age-matched non-pregnant Control and Restricted F1 females were also studied. F1 Restricted females were born 10-15% lighter than Controls. Basal insulin secretion and pancreatic β-cell mass were reduced in non-pregnant Restricted females but restored in pregnancy. Pregnant Restricted females, however, showed impaired glucose tolerance and compensatory glomerular hypertrophy, with a nephron deficit but normal renal function and blood pressure. F2 fetuses from Restricted mothers exposed to physiological measures during pregnancy were lighter than Controls highlighting additive adverse effects when mothers born small experience stress during pregnancy. Female rats born small exhibit mostly normal cardio-renal adaptations but altered glucose control during late pregnancy making them vulnerable to lifestyle challenges.
  • Item
    No Preview Available
    Exercise early in life in rats born small does not normalize reductions in skeletal muscle PGC-1α in adulthood
    Laker, RC ; Wlodek, ME ; Wadley, GD ; Gallo, LA ; Meikle, PJ ; McConell, GK (AMER PHYSIOLOGICAL SOC, 2012-05)
    We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5-9 (early exercise) or 20-24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no "reprogramming" effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.
  • Item
    No Preview Available
    Uteroplacental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy
    Mazzuca, MQ ; Tare, M ; Parkington, HC ; Dragomir, NM ; Parry, LJ ; Wlodek, ME (WILEY, 2012-07)
    Intrauterine growth restriction is a risk factor for cardiovascular disease in adulthood. We have previously shown that intrauterine growth restriction caused by uteroplacental insufficiency programmes uterine vascular dysfunction and increased arterial stiffness in adult female rat offspring. The aim of this study was to investigate vascular adaptations in growth restricted female offspring when they in turn become pregnant. Uteroplacental insufficiency was induced in WKY rats by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of pregnancy. F0 pregnant females delivered naturally at term. F1 Control and Restricted offspring were mated at 4 months of age and studied on day 20 of pregnancy. Age-matched non-pregnant F1 Control and Restricted females were also studied. Wire and pressure myography were used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in uterine, mesenteric, renal and femoral arteries of all four groups. Collagen and elastin fibres were quantified using polarized light microscopy and qRT-PCR. F1 Restricted females were born 10–15% lighter than Controls (P <0.05). Non-pregnant Restricted females had increased uterine and renal artery stiffness compared with Controls (P <0.05), but this difference was abolished at day 20 of pregnancy. Vascular smooth muscle and endothelial function were preserved in all arteries of non-pregnant and pregnant Restricted rats. Collagen and elastin content were unaltered in uterine arteries of Restricted females. Growth restricted females develop compensatory vascular changes during late pregnancy, such that region-specific vascular deficits observed in the non-pregnant state did not persist in late pregnancy.
  • Item
    Thumbnail Image
    Pregnancy in aged rats that were born small: cardiorenal and metabolic adaptations and second-generation fetal growth
    Gallo, LA ; Tran, M ; Moritz, KM ; Jefferies, AJ ; Wlodek, ME (FEDERATION AMER SOC EXP BIOL, 2012-10)
    Uteroplacental insufficiency is associated with adult cardiorenal and metabolic diseases, particularly in males. Pregnancy is the greatest physiological challenge facing women, and those born small are at increased risk of gestational hypertension and diabetes and delivering smaller babies. Increased maternal age is associated with exacerbated pregnancy complications. We hypothesized that pregnancy in aged, growth-restricted females unmasks an underlying predisposition to cardiorenal and metabolic dysfunction and compromises fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (restricted group) or sham surgery (control group) on d 18 of gestation in Wistar Kyoto rats. At 12 mo, growth-restricted F1 female offspring were mated with a normal male. F1 restricted females had elevated systolic blood pressure, before and during pregnancy (+10 mmHg) but normal renal and metabolic pregnancy adaptations. F2 fetal weight was not different between groups. In control and restricted females, advanced maternal age (12 vs. 4 mo) was associated with a reduction in the hypoglycemic response to pregnancy and reduced F2 fetal litter size and body weight. Aged rats born small exhibited mostly normal pregnancy adaptations, although they had elevated blood pressure. Advanced maternal age was associated with poorer fetal outcomes that were not exacerbated by low maternal birth weight.
  • Item
    Thumbnail Image
    Uteroplacental Insufficiency and Lactational Environment Separately Influence Arterial Stiffness and Vascular Function in Adult Male Rats
    Tare, M ; Parkington, HC ; Bubb, KJ ; Wlodek, ME (LIPPINCOTT WILLIAMS & WILKINS, 2012-08)
    Early life environmental influences can have lifelong consequences for health, including the risk of cardiovascular disease. Uteroplacental insufficiency causes fetal undernutrition and impairs fetal growth. Previously we have shown that uteroplacental insufficiency is associated with impaired maternal mammary development, compromising postnatal growth leading to hypertension in male rat offspring. In this study we investigated the roles of prenatal and postnatal nutritional environments on endothelial and smooth muscle reactivity and passive wall stiffness of resistance arteries of male rat offspring. Fetal growth restriction was induced by maternal bilateral uterine vessel ligation (restricted) on day 18 of pregnancy. Control offspring were from mothers that had sham surgery (control) and another group from mothers with their litter size reduced (reduced; litter size reduced to 5 at birth, equivalent to the restricted group). On postnatal day 1, offspring (control, restricted, and reduced) were cross-fostered onto control or restricted mothers. At 6 months, mesenteric and femoral arteries were studied using wire and pressure myography. In restricted-on-restricted rats, wall stiffness was increased, and sensitivity to phenylephrine and relaxation evoked by endothelium-derived hyperpolarizing factor and sodium nitroprusside were impaired in mesenteric arteries. In femoral arteries, relaxation to sodium nitroprusside was reduced, whereas wall stiffness was unaltered. Cross-fostering restricted offspring onto control mothers alleviated deficits in vascular stiffness and reactivity. Control or reduced offspring who suckled a restricted mother had marked vascular stiffening. In conclusion, prenatal and early postnatal environments separately influence vascular function and stiffness. Furthermore, the early postnatal lactational environment is a determinant of later cardiovascular function.
  • Item
    Thumbnail Image
    Effect of Pregnancy for Females Born Small on Later Life Metabolic Disease Risk
    Tran, M ; Gallo, LA ; Wadley, GD ; Jefferies, AJ ; Moritz, KM ; Wlodek, ME ; He, B (PUBLIC LIBRARY SCIENCE, 2012-09-13)
    There is a strong inverse relationship between a females own birth weight and her subsequent risk for gestational diabetes with increased risk of developing diabetes later in life. We have shown that growth restricted females develop loss of glucose tolerance during late pregnancy with normal pancreatic function. The aim of this study was to determine whether growth restricted females develop long-term impairment of metabolic control after an adverse pregnancy adaptation. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) in late pregnancy (E18) in F0 female rats. F1 Control and Restricted female offspring were mated with normal males and allowed to deliver (termed Ex-Pregnant). Age-matched Control and Restricted Virgins were also studied and glucose tolerance and insulin secretion were determined. Pancreatic morphology and hepatic glycogen and triacylglycerol content were quantified respectively. Restricted females were born lighter than Control and remained lighter at all time points studied (p<0.05). Glucose tolerance, first phase insulin secretion and liver glycogen and triacylglycerol content were not different across groups, with no changes in β-cell mass. Second phase insulin secretion was reduced in Restricted Virgins (-34%, p<0.05) compared to Control Virgins, suggestive of enhanced peripheral insulin sensitivity but this was lost after pregnancy. Growth restriction was associated with enhanced basal hepatic insulin sensitivity, which may provide compensatory benefits to prevent adverse metabolic outcomes often associated with being born small. A prior pregnancy was associated with reduced hepatic insulin sensitivity with effects more pronounced in Controls than Restricted. Our data suggests that pregnancy ameliorates the enhanced peripheral insulin sensitivity in growth restricted females and has deleterious effects for hepatic insulin sensitivity, regardless of maternal birth weight.