Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    toxCSM: comprehensive prediction of small molecule toxicity profiles
    de Sa, AGC ; Long, Y ; Portelli, S ; Pires, DE ; Ascher, DB (OXFORD UNIV PRESS, 2022-09-20)
    Drug discovery is a lengthy, costly and high-risk endeavour that is further convoluted by high attrition rates in later development stages. Toxicity has been one of the main causes of failure during clinical trials, increasing drug development time and costs. To facilitate early identification and optimisation of toxicity profiles, several computational tools emerged aiming at improving success rates by timely pre-screening drug candidates. Despite these efforts, there is an increasing demand for platforms capable of assessing both environmental as well as human-based toxicity properties at large scale. Here, we present toxCSM, a comprehensive computational platform for the study and optimisation of toxicity profiles of small molecules. toxCSM leverages on the well-established concepts of graph-based signatures, molecular descriptors and similarity scores to develop 36 models for predicting a range of toxicity properties, which can assist in developing safer drugs and agrochemicals. toxCSM achieved an Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of up to 0.99 and Pearson's correlation coefficients of up to 0.94 on 10-fold cross-validation, with comparable performance on blind test sets, outperforming all alternative methods. toxCSM is freely available as a user-friendly web server and API at http://biosig.lab.uq.edu.au/toxcsm.
  • Item
    No Preview Available
    cardioToxCSM: A Web Server for Predicting Cardiotoxicity of Small Molecules
    Iftkha, S ; de Sa, AGC ; Velloso, JPL ; Aljarf, R ; Pires, DEV ; Ascher, DB (AMER CHEMICAL SOC, 2022-10-24)
    The design of novel, safe, and effective drugs to treat human diseases is a challenging venture, with toxicity being one of the main sources of attrition at later stages of development. Failure due to toxicity incurs a significant increase in costs and time to market, with multiple drugs being withdrawn from the market due to their adverse effects. Cardiotoxicity, for instance, was responsible for the failure of drugs such as fenspiride, propoxyphene, and valdecoxib. While significant effort has been dedicated to mitigate this issue by developing computational approaches that aim to identify molecules likely to be toxic, including quantitative structure-activity relationship models and machine learning methods, current approaches present limited performance and interpretability. To overcome these, we propose a new web-based computational method, cardioToxCSM, which can predict six types of cardiac toxicity outcomes, including arrhythmia, cardiac failure, heart block, hERG toxicity, hypertension, and myocardial infarction, efficiently and accurately. cardioToxCSM was developed using the concept of graph-based signatures, molecular descriptors, toxicophore matchings, and molecular fingerprints, leveraging explainable machine learning, and was validated internally via different cross validation schemes and externally via low-redundancy blind sets. The models presented robust performances with areas under ROC curves of up to 0.898 on 5-fold cross-validation, consistent with metrics on blind tests. Additionally, our models provide interpretation of the predictions by identifying whether substructures that are commonly enriched in toxic compounds were present. We believe cardioToxCSM will provide valuable insight into the potential cardiotoxicity of small molecules early on drug screening efforts. The method is made freely available as a web server at https://biosig.lab.uq.edu.au/cardiotoxcsm.
  • Item
    Thumbnail Image
    Distinguishing between PTEN clinical phenotypes through mutation analysis
    Portelli, S ; Barr, L ; de Sa, AGC ; Pires, DE ; Ascher, DB (ELSEVIER, 2021)
    Phosphate and tensin homolog on chromosome ten (PTEN) germline mutations are associated with an overarching condition known as PTEN hamartoma tumor syndrome. Clinical phenotypes associated with this syndrome range from macrocephaly and autism spectrum disorder to Cowden syndrome, which manifests as multiple noncancerous tumor-like growths (hamartomas), and an increased predisposition to certain cancers. It is unclear, however, the basis by which mutations might lead to these very diverse phenotypic outcomes. Here we show that, by considering the molecular consequences of mutations in PTEN on protein structure and function, we can accurately distinguish PTEN mutations exhibiting different phenotypes. Changes in phosphatase activity, protein stability, and intramolecular interactions appeared to be major drivers of clinical phenotype, with cancer-associated variants leading to the most drastic changes, while ASD and non-pathogenic variants associated with more mild and neutral changes, respectively. Importantly, we show via saturation mutagenesis that more than half of variants of unknown significance could be associated with disease phenotypes, while over half of Cowden syndrome mutations likely lead to cancer. These insights can assist in exploring potentially important clinical outcomes delineated by PTEN variation.