Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    BioCreative VI Precision Medicine Track system performance is constrained by entity recognition and variations in corpus characteristics
    Chen, Q ; Panyam, NC ; Elangovan, A ; Verspoor, K (OXFORD UNIV PRESS, 2018-12-14)
    Precision medicine aims to provide personalized treatments based on individual patient profiles. One critical step towards precision medicine is leveraging knowledge derived from biomedical publications-a tremendous literature resource presenting the latest scientific discoveries on genes, mutations and diseases. Biomedical natural language processing (BioNLP) plays a vital role in supporting automation of this process. BioCreative VI Track 4 brings community effort to the task of automatically identifying and extracting protein-protein interactions (PPi) affected by mutations (PPIm), important in the precision medicine context for capturing individual genotype variation related to disease.We present the READ-BioMed team's approach to identifying PPIm-related publications and to extracting specific PPIm information from those publications in the context of the BioCreative VI PPIm track. We observe that current BioNLP tools are insufficient to recognise entities for these two tasks; the best existing mutation recognition tool achieves only 55% recall in the document triage training set, while relation extraction performance is limited by the low recall performance of gene entity recognition. We develop the models accordingly: for document triage, we develop term lists capturing interactions and mutations to complement BioNLP tools, and select effective features via a feature contribution study, whereas an ensemble of BioNLP tools is employed for relation extraction.Our best document triage model achieves an F-score of 66.77% while our best model for relation extraction achieved an F-score of 35.09% over the final (updated post-task) test set. Impacting the document triage task, the characteristics of mutations are statistically different in the training and testing sets. While a vital new direction for biomedical text mining research, this early attempt to tackle the problem of identifying genetic variation of substantial biological significance highlights the importance of representative training data and the cascading impact of tool limitations in a modular system.
  • Item
    Thumbnail Image
    Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine
    Dogan, RI ; Kim, S ; Chatr-aryamontri, A ; Wei, C-H ; Comeau, DC ; Antunes, R ; Matos, S ; Chen, Q ; Elangovan, A ; Panyam, NC ; Verspoor, K ; Liu, H ; Wang, Y ; Liu, Z ; Altinel, B ; Husunbeyi, ZM ; Ozgur, A ; Fergadis, A ; Wang, C-K ; Dai, H-J ; Tran, T ; Kavuluru, R ; Luo, L ; Steppi, A ; Zhang, J ; Qu, J ; Lu, Z (Oxford University Press, 2019-01-28)
    The Precision Medicine Initiative is a multicenter effort aiming at formulating personalized treatments leveraging on individual patient data (clinical, genome sequence and functional genomic data) together with the information in large knowledge bases (KBs) that integrate genome annotation, disease association studies, electronic health records and other data types. The biomedical literature provides a rich foundation for populating these KBs, reporting genetic and molecular interactions that provide the scaffold for the cellular regulatory systems and detailing the influence of genetic variants in these interactions. The goal of BioCreative VI Precision Medicine Track was to extract this particular type of information and was organized in two tasks: (i) document triage task, focused on identifying scientific literature containing experimentally verified protein–protein interactions (PPIs) affected by genetic mutations and (ii) relation extraction task, focused on extracting the affected interactions (protein pairs). To assist system developers and task participants, a large-scale corpus of PubMed documents was manually annotated for this task. Ten teams worldwide contributed 22 distinct text-mining models for the document triage task, and six teams worldwide contributed 14 different text-mining systems for the relation extraction task. When comparing the text-mining system predictions with human annotations, for the triage task, the best F-score was 69.06%, the best precision was 62.89%, the best recall was 98.0% and the best average precision was 72.5%. For the relation extraction task, when taking homologous genes into account, the best F-score was 37.73%, the best precision was 46.5% and the best recall was 54.1%. Submitted systems explored a wide range of methods, from traditional rule-based, statistical and machine learning systems to state-of-the-art deep learning methods. Given the level of participation and the individual team results we find the precision medicine track to be successful in engaging the text-mining research community. In the meantime, the track produced a manually annotated corpus of 5509 PubMed documents developed by BioGRID curators and relevant for precision medicine. The data set is freely available to the community, and the specific interactions have been integrated into the BioGRID data set. In addition, this challenge provided the first results of automatically identifying PubMed articles that describe PPI affected by mutations, as well as extracting the affected relations from those articles. Still, much progress is needed for computer-assisted precision medicine text mining to become mainstream. Future work should focus on addressing the remaining technical challenges and incorporating the practical benefits of text-mining tools into real-world precision medicine information-related curation.