Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    No Preview Available
    AI-augmented Business Process Management Systems: A Research Manifesto
    Dumas, M ; Fournier, F ; Limonad, L ; Marrella, A ; Montali, M ; Rehse, J-R ; Accorsi, R ; Calvanese, D ; De Giacomo, G ; Fahland, D ; Gal, A ; La Rosa, M ; Voelzer, H ; Weber, I (ASSOC COMPUTING MACHINERY, 2023-03)
    AI-augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems, empowered by trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an ABPMS, we discuss core characteristics of an ABPMS, and we derive a set of challenges to realize systems with these characteristics.
  • Item
    Thumbnail Image
    Prescriptive process monitoring based on causal effect estimation
    Bozorgi, ZD ; Teinemaa, I ; Dumas, M ; La Rosa, M ; Polyvyanyy, A (PERGAMON-ELSEVIER SCIENCE LTD, 2023-06)
    Prescriptive process monitoring methods seek to control the execution of a business process by triggering interventions, at runtime, to optimise one or more performance measure(s) such as cycle time or defect rate. Examples of interventions include, for example, using a premium shipping service to reduce cycle time in an order-to-cash process, or offering better loan conditions to increase the acceptance rate in a loan origination process. Each of these interventions comes with a cost. Thus, it is important to carefully select the set of cases to which an intervention is applied. The paper proposes a prescriptive process monitoring method that incorporates causal inference techniques to estimate the causal effect of triggering an intervention on each ongoing case of a process. Based on this estimate, the method triggers interventions according to a user-defined policy, taking into account the net gain of the interventions. The method is evaluated on four real-life data sets.
  • Item
    No Preview Available
    Business process variant analysis: Survey and classification
    Taymouri, F ; La Rosa, M ; Dumas, M ; Maggi, FM (ELSEVIER, 2021-01-09)
    It is common for business processes to exhibit a high degree of internal heterogeneity, in the sense that the executions of the process differ widely from each other due to contextual factors, human factors, or deliberate business decisions. For example, a quote-to-cash process in a multinational company is typically executed differently across different countries or even across different regions in the same country. Similarly, an insurance claims handling process might be executed differently across different claims handling centres or across multiple teams within the same claims handling centre. A subset of executions of a business process that can be distinguished from others based on a given predicate (e.g. the executions of a process in a given country) is called a process variant. Understanding differences between process variants helps analysts and managers to make informed decisions as to how to standardize or otherwise improve a business process, for example by helping them find out what makes it that a given variant exhibits a higher performance than another one. Process variant analysis is a family of techniques to analyze event logs produced during the execution of a process, in order to identify and explain the differences between two or more process variants. A wide range of methods for process variant analysis have been proposed in the past decade. However, due to the interdisciplinary nature of this field, the proposed methods and the types of differences they can identify vary widely, and there is a lack of a unifying view of the field. To close this gap, this article presents a systematic literature review of methods for process variant analysis. The identified studies are classified according to their inputs, outputs, analysis purpose, underpinning algorithms, and extra-functional characteristics. The paper closes with a broad classification of approaches into three categories based on the paradigm they employ to compare multiple process variants.
  • Item
    Thumbnail Image
    Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study
    Martin, N ; Fischer, DA ; Kerpedzhiev, GD ; Goel, K ; Leemans, SJJ ; Roeglinger, M ; van der Aalst, WMP ; Dumas, M ; La Rosa, M ; Wynn, MT (SPRINGER VIEWEG-SPRINGER FACHMEDIEN WIESBADEN GMBH, 2021-10)
    Abstract Process mining is an active research domain and has been applied to understand and improve business processes. While significant research has been conducted on the development and improvement of algorithms, evidence on the application of process mining in organizations has been far more limited. In particular, there is limited understanding of the opportunities and challenges of using process mining in organizations. Such an understanding has the potential to guide research by highlighting barriers for process mining adoption and, thus, can contribute to successful process mining initiatives in practice. In this respect, the paper provides a holistic view of opportunities and challenges for process mining in organizations identified in a Delphi study with 40 international experts from academia and industry. Besides proposing a set of 30 opportunities and 32 challenges, the paper conveys insights into the comparative relevance of individual items, as well as differences in the perceived relevance between academics and practitioners. Therefore, the study contributes to the future development of process mining, both as a research field and regarding its application in organizations.
  • Item
    Thumbnail Image
    Discovering data transfer routines from user interaction logs
    Leno, V ; Augusto, A ; Dumas, M ; La Rosa, M ; Maggi, FM ; Polyvyanyy, A (PERGAMON-ELSEVIER SCIENCE LTD, 2022-07)
    Robotic Process Automation (RPA) is a technology to automate routine work such as copying data across applications or filling in document templates using data from multiple applications. RPA tools allow organizations to automate a wide range of routines. However, identifying and scoping routines that can be automated using RPA tools is time consuming. Manual identification of candidate routines via interviews, walk-throughs, or job shadowing allow analysts to identify the most visible routines, but these methods are not suitable when it comes to identifying the long tail of routines in an organization. This article proposes an approach to discover automatable routines from logs of user interactions with IT systems and to synthetize executable specifications for such routines. The proposed approach focuses on discovering routines where a user transfers data from a set of fields (or cells) in an application, to another set of fields in the same or in a different application (data transfer routines). The approach starts by discovering frequent routines at a control-flow level (candidate routines). It then determines which of these candidate routines are automatable and it synthetizes an executable specification for each such routine. Finally, it identifies semantically equivalent routines so as to output a set of non-redundant routines. The article reports on an evaluation of the approach using a combination of synthetic and real-life logs. The evaluation results show that the approach can discover automatable routines that are known to be present in a UI log, and that it discovers routines that users recognize as such in real-life logs.
  • Item
    Thumbnail Image
    Automated Repair of Process Models with Non-Local Constraints Using State-Based Region Theory
    Kalenkova, A ; Carmona, J ; Polyvyanyy, A ; La Rosa, M ; Janicki, R ; Lasota, S ; Sidorova, N (IOS PRESS, 2021-06-26)
    State-of-the-art process discovery methods construct free-choice process models from event logs. Consequently, the constructed models do not take into account indirect dependencies between events. Whenever the input behaviour is not free-choice, these methods fail to provide a precise model. In this paper, we propose a novel approach for enhancing free-choice process models by adding non-free-choice constructs discovered a-posteriori via region-based techniques. This allows us to benefit from the performance of existing process discovery methods and the accuracy of the employed fundamental synthesis techniques. We prove that the proposed approach preserves fitness with respect to the event log while improving the precision when indirect dependencies exist. The approach has been implemented and tested on both synthetic and real-life datasets. The results show its effectiveness in repairing models discovered from event logs.
  • Item
    Thumbnail Image
    Automated Repair of Process Models with Non-local Constraints Using State-Based Region Theory
    Kalenkova, A ; Carmona, J ; Polyvyanyy, A ; La Rosa, M ; Janicki, R ; Lasota, S ; Sidorova, N (IOS Press, 2022-01-10)
    State-of-the-art process discovery methods construct free-choice process models from event logs. Consequently, the constructed models do not take into account indirect dependencies between events. Whenever the input behaviour is not free-choice, these methods fail to provide a precise model. In this paper, we propose a novel approach for enhancing free-choice process models by adding non-free-choice constructs discovered a-posteriori via region-based techniques. This allows us to benefit from the performance of existing process discovery methods and the accuracy of the employed fundamental synthesis techniques. We prove that the proposed approach preserves fitness with respect to the event log while improving the precision when indirect dependencies exist. The approach has been implemented and tested on both synthetic and real-life datasets. The results show its effectiveness in repairing models discovered from event logs.
  • Item
    No Preview Available
    Robust Drift Characterization from Event Streams of Business Processes
    Ostovar, A ; Leemans, SJJ ; La Rosa, M (ASSOC COMPUTING MACHINERY, 2020-05)
    Process workers may vary the normal execution of a business process to adjust to changes in their operational environment, e.g., changes in workload, season, or regulations. Changes may be simple, such as skipping an individual activity, or complex, such as replacing an entire procedure with another. Over time, these changes may negatively affect process performance; hence, it is important to identify and understand them early on. As such, a number of techniques have been developed to detect process drifts , i.e., statistically significant changes in process behavior, from process event logs (offline) or event streams (online). However, detecting a drift without characterizing it, i.e., without providing explanations on its nature, is not enough to help analysts understand and rectify root causes for process performance issues. Existing approaches for drift characterization are limited to simple changes that affect individual activities. This article contributes an efficient, accurate, and noise-tolerant automated method for characterizing complex drifts affecting entire process fragments. The method, which works both offline and online, relies on two cornerstone techniques, one to automatically discover process trees from event streams (logs) and the other to transform process trees using a minimum number of change operations. The operations identified are then translated into natural language statements to explain the change behind a drift. The method has been extensively evaluated on artificial and real-life datasets, and against a state-of-the-art baseline method. The results from one of the real-life datasets have also been validated with a process stakeholder.
  • Item
    Thumbnail Image
    Seven Paradoxes of Business Process Management in a Hyper-Connected World
    Beverungen, D ; Buijs, JCAM ; Becker, J ; Di Ciccio, C ; van der Aalst, WMP ; Bartelheimer, C ; vom Brocke, J ; Comuzzi, M ; Kraume, K ; Leopold, H ; Matzner, M ; Mendling, J ; Ogonek, N ; Post, T ; Resinas, M ; Revoredo, K ; del-Rio-Ortega, A ; La Rosa, M ; Santoro, FM ; Solti, A ; Song, M ; Stein, A ; Stierle, M ; Wolf, V (SPRINGER VIEWEG-SPRINGER FACHMEDIEN WIESBADEN GMBH, 2021-04)
    Abstract Business Process Management is a boundary-spanning discipline that aligns operational capabilities and technology to design and manage business processes. The Digital Transformation has enabled human actors, information systems, and smart products to interact with each other via multiple digital channels. The emergence of this hyper-connected world greatly leverages the prospects of business processes – but also boosts their complexity to a new level. We need to discuss how the BPM discipline can find new ways for identifying, analyzing, designing, implementing, executing, and monitoring business processes. In this research note, selected transformative trends are explored and their impact on current theories and IT artifacts in the BPM discipline is discussed to stimulate transformative thinking and prospective research in this field.
  • Item
    Thumbnail Image
    Detection and removal of infrequent behavior from event streams of business processes
    van Zelst, SJ ; Fani Sani, M ; Ostovar, A ; Conforti, R ; La Rosa, M (Elsevier Ltd, 2020-05-01)
    Process mining aims at gaining insights into business processes by analyzing the event data that is generated and recorded during process execution. The vast majority of existing process mining techniques works offline, i.e. using static, historical data, stored in event logs. Recently, the notion of online process mining has emerged, in which techniques are applied on live event streams, i.e. as the process executions unfold. Analyzing event streams allows us to gain instant insights into business processes. However, most online process mining techniques assume the input stream to be completely free of noise and other anomalous behavior. Hence, applying these techniques to real data leads to results of inferior quality. In this paper, we propose an event processor that enables us to filter out infrequent behavior from live event streams. Our experiments show that we are able to effectively filter out events from the input stream and, as such, improve online process mining results.