Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 276
  • Item
    Thumbnail Image
    BioCaster: detecting public health rumors with a Web-based text mining system.
    Collier, N ; Doan, S ; Kawazoe, A ; Goodwin, RM ; Conway, M ; Tateno, Y ; Ngo, Q-H ; Dien, D ; Kawtrakul, A ; Takeuchi, K ; Shigematsu, M ; Taniguchi, K (Oxford University Press (OUP), 2008-12-15)
    SUMMARY: BioCaster is an ontology-based text mining system for detecting and tracking the distribution of infectious disease outbreaks from linguistic signals on the Web. The system continuously analyzes documents reported from over 1700 RSS feeds, classifies them for topical relevance and plots them onto a Google map using geocoded information. The background knowledge for bridging the gap between Layman's terms and formal-coding systems is contained in the freely available BioCaster ontology which includes information in eight languages focused on the epidemiological role of pathogens as well as geographical locations with their latitudes/longitudes. The system consists of four main stages: topic classification, named entity recognition (NER), disease/location detection and event recognition. Higher order event analysis is used to detect more precisely specified warning signals that can then be notified to registered users via email alerts. Evaluation of the system for topic recognition and entity identification is conducted on a gold standard corpus of annotated news articles. AVAILABILITY: The BioCaster map and ontology are freely available via a web portal at http://www.biocaster.org.
  • Item
    Thumbnail Image
    Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks
    Abi-Haidar, A ; Kaur, J ; Maguitman, A ; Radivojac, P ; Rechtsteiner, A ; Verspoor, K ; Wang, Z ; Rocha, LM (BMC, 2008)
    BACKGROUND: We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks. RESULTS: Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. CONCLUSION: Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
  • Item
    Thumbnail Image
    Ontology quality assurance through analysis of term transformations
    Verspoor, K ; Dvorkin, D ; Cohen, KB ; Hunter, L (OXFORD UNIV PRESS, 2009-06-15)
    MOTIVATION: It is important for the quality of biological ontologies that similar concepts be expressed consistently, or univocally. Univocality is relevant for the usability of the ontology for humans, as well as for computational tools that rely on regularity in the structure of terms. However, in practice terms are not always expressed consistently, and we must develop methods for identifying terms that are not univocal so that they can be corrected. RESULTS: We developed an automated transformation-based clustering methodology for detecting terms that use different linguistic conventions for expressing similar semantics. These term sets represent occurrences of univocality violations. Our method was able to identify 67 examples of univocality violations in the Gene Ontology. AVAILABILITY: The identified univocality violations are available upon request. We are preparing a release of an open source version of the software to be available at http://bionlp.sourceforge.net.
  • Item
    Thumbnail Image
    The textual characteristics of traditional and Open Access scientific journals are similar
    Verspoor, K ; Cohen, KB ; Hunter, L (BMC, 2009-06-15)
    BACKGROUND: Recent years have seen an increased amount of natural language processing (NLP) work on full text biomedical journal publications. Much of this work is done with Open Access journal articles. Such work assumes that Open Access articles are representative of biomedical publications in general and that methods developed for analysis of Open Access full text publications will generalize to the biomedical literature as a whole. If this assumption is wrong, the cost to the community will be large, including not just wasted resources, but also flawed science. This paper examines that assumption. RESULTS: We collected two sets of documents, one consisting only of Open Access publications and the other consisting only of traditional journal publications. We examined them for differences in surface linguistic structures that have obvious consequences for the ease or difficulty of natural language processing and for differences in semantic content as reflected in lexical items. Regarding surface linguistic structures, we examined the incidence of conjunctions, negation, passives, and pronominal anaphora, and found that the two collections did not differ. We also examined the distribution of sentence lengths and found that both collections were characterized by the same mode. Regarding lexical items, we found that the Kullback-Leibler divergence between the two collections was low, and was lower than the divergence between either collection and a reference corpus. Where small differences did exist, log likelihood analysis showed that they were primarily in the area of formatting and in specific named entities. CONCLUSION: We did not find structural or semantic differences between the Open Access and traditional journal collections.
  • Item
    Thumbnail Image
    Reuse of terminological resources for efficient ontological engineering in Life Sciences
    Jimeno-Yepes, A ; Jimenez-Ruiz, E ; Berlanga-Llavori, R ; Rebholz-Schuhmann, D (BMC, 2009)
    This paper is intended to explore how to use terminological resources for ontology engineering. Nowadays there are several biomedical ontologies describing overlapping domains, but there is not a clear correspondence between the concepts that are supposed to be equivalent or just similar. These resources are quite precious but their integration and further development are expensive. Terminologies may support the ontological development in several stages of the lifecycle of the ontology; e.g. ontology integration. In this paper we investigate the use of terminological resources during the ontology lifecycle. We claim that the proper creation and use of a shared thesaurus is a cornerstone for the successful application of the Semantic Web technology within life sciences. Moreover, we have applied our approach to a real scenario, the Health-e-Child (HeC) project, and we have evaluated the impact of filtering and re-organizing several resources. As a result, we have created a reference thesaurus for this project, named HeCTh.
  • Item
    Thumbnail Image
    Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb
    Nagel, K ; Jimeno-Yepes, A ; Rebholz-Schuhmann, D (BMC, 2009)
    BACKGROUND: A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level. RESULTS: This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources. CONCLUSION: This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.
  • Item
    Thumbnail Image
    Assessment of disease named entity recognition on a corpus of annotated sentences
    Jimeno, A ; Jimenez-Ruiz, E ; Lee, V ; Gaudan, S ; Berlanga, R ; Rebholz-Schuhmann, D (BMC, 2008)
    BACKGROUND: In recent years, the recognition of semantic types from the biomedical scientific literature has been focused on named entities like protein and gene names (PGNs) and gene ontology terms (GO terms). Other semantic types like diseases have not received the same level of attention. Different solutions have been proposed to identify disease named entities in the scientific literature. While matching the terminology with language patterns suffers from low recall (e.g., Whatizit) other solutions make use of morpho-syntactic features to better cover the full scope of terminological variability (e.g., MetaMap). Currently, MetaMap that is provided from the National Library of Medicine (NLM) is the state of the art solution for the annotation of concepts from UMLS (Unified Medical Language System) in the literature. Nonetheless, its performance has not yet been assessed on an annotated corpus. In addition, little effort has been invested so far to generate an annotated dataset that links disease entities in text to disease entries in a database, thesaurus or ontology and that could serve as a gold standard to benchmark text mining solutions. RESULTS: As part of our research work, we have taken a corpus that has been delivered in the past for the identification of associations of genes to diseases based on the UMLS Metathesaurus and we have reprocessed and re-annotated the corpus. We have gathered annotations for disease entities from two curators, analyzed their disagreement (0.51 in the kappa-statistic) and composed a single annotated corpus for public use. Thereafter, three solutions for disease named entity recognition including MetaMap have been applied to the corpus to automatically annotate it with UMLS Metathesaurus concepts. The resulting annotations have been benchmarked to compare their performance. CONCLUSIONS: The annotated corpus is publicly available at ftp://ftp.ebi.ac.uk/pub/software/textmining/corpora/diseases and can serve as a benchmark to other systems. In addition, we found that dictionary look-up already provides competitive results indicating that the use of disease terminology is highly standardized throughout the terminologies and the literature. MetaMap generates precise results at the expense of insufficient recall while our statistical method obtains better recall at a lower precision rate. Even better results in terms of precision are achieved by combining at least two of the three methods leading, but this approach again lowers recall. Altogether, our analysis gives a better understanding of the complexity of disease annotations in the literature. MetaMap and the dictionary based approach are available through the Whatizit web service infrastructure (Rebholz-Schuhmann D, Arregui M, Gaudan S, Kirsch H, Jimeno A: Text processing through Web services: Calling Whatizit. Bioinformatics 2008, 24:296-298).
  • Item
    Thumbnail Image
    Connectivity, Coverage and Placement in Wireless Sensor Networks
    Li, J ; Andrew, LLH ; Foh, CH ; Zukerman, M ; Chen, H-H (MDPI, 2009-10)
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes.
  • Item
    Thumbnail Image
    A voting approach to identify a small number of highly predictive genes using multiple classifiers
    Hassan, MR ; Hossain, MM ; Bailey, J ; Macintyre, G ; Ho, JWK ; Ramamohanarao, K (BMC, 2009-01-30)
    BACKGROUND: Microarray gene expression profiling has provided extensive datasets that can describe characteristics of cancer patients. An important challenge for this type of data is the discovery of gene sets which can be used as the basis of developing a clinical predictor for cancer. It is desirable that such gene sets be compact, give accurate predictions across many classifiers, be biologically relevant and have good biological process coverage. RESULTS: By using a new type of multiple classifier voting approach, we have identified gene sets that can predict breast cancer prognosis accurately, for a range of classification algorithms. Unlike a wrapper approach, our method is not specialised towards a single classification technique. Experimental analysis demonstrates higher prediction accuracies for our sets of genes compared to previous work in the area. Moreover, our sets of genes are generally more compact than those previously proposed. Taking a biological viewpoint, from the literature, most of the genes in our sets are known to be strongly related to cancer. CONCLUSION: We show that it is possible to obtain superior classification accuracy with our approach and obtain a compact gene set that is also biologically relevant and has good coverage of different biological processes.
  • Item
    Thumbnail Image
    Precision-mapping and statistical validation of quantitative trait loci by machine learning
    Bedo, J ; Wenzl, P ; Kowalczyk, A ; Kilian, A (BIOMED CENTRAL LTD, 2008-05-02)
    BACKGROUND: We introduce a QTL-mapping algorithm based on Statistical Machine Learning (SML) that is conceptually quite different to existing methods as there is a strong focus on generalisation ability. Our approach combines ridge regression, recursive feature elimination, and estimation of generalisation performance and marker effects using bootstrap resampling. Model performance and marker effects are determined using independent testing samples (individuals), thus providing better estimates. We compare the performance of SML against Composite Interval Mapping (CIM), Bayesian Interval Mapping (BIM) and single Marker Regression (MR) on synthetic datasets and a multi-trait and multi-environment dataset of the progeny for a cross between two barley cultivars. RESULTS: In an analysis of the synthetic datasets, SML accurately predicted the number of QTL underlying a trait while BIM tended to underestimate the number of QTL. The QTL identified by SML for the barley dataset broadly coincided with known QTL locations. SML reported approximately half of the QTL reported by either CIM or MR, not unexpected given that neither CIM nor MR incorporates independent testing. The latter makes these two methods susceptible to producing overly optimistic estimates of QTL effects, as we demonstrate for MR. The QTL resolution (peak definition) afforded by SML was consistently superior to MR, CIM and BIM, with QTL detection power similar to BIM. The precision of SML was underscored by repeatedly identifying, at < or = 1-cM precision, three QTL for four partially related traits (heading date, plant height, lodging and yield). The set of QTL obtained using a 'raw' and a 'curated' version of the same genotypic dataset were more similar to each other for SML than for CIM or MR. CONCLUSION: The SML algorithm produces better estimates of QTL effects because it eliminates the optimistic bias in the predictive performance of other QTL methods. It produces narrower peaks than other methods (except BIM) and hence identifies QTL with greater precision. It is more robust to genotyping and linkage mapping errors, and identifies markers linked to QTL in the absence of a genetic map.