Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 594
  • Item
    Thumbnail Image
    Stratification bias in low signal microarray studies
    Parker, BJ ; Guenter, S ; Bedo, J (BMC, 2007-09-02)
    BACKGROUND: When analysing microarray and other small sample size biological datasets, care is needed to avoid various biases. We analyse a form of bias, stratification bias, that can substantially affect analyses using sample-reuse validation techniques and lead to inaccurate results. This bias is due to imperfect stratification of samples in the training and test sets and the dependency between these stratification errors, i.e. the variations in class proportions in the training and test sets are negatively correlated. RESULTS: We show that when estimating the performance of classifiers on low signal datasets (i.e. those which are difficult to classify), which are typical of many prognostic microarray studies, commonly used performance measures can suffer from a substantial negative bias. For error rate this bias is only severe in quite restricted situations, but can be much larger and more frequent when using ranking measures such as the receiver operating characteristic (ROC) curve and area under the ROC (AUC). Substantial biases are shown in simulations and on the van 't Veer breast cancer dataset. The classification error rate can have large negative biases for balanced datasets, whereas the AUC shows substantial pessimistic biases even for imbalanced datasets. In simulation studies using 10-fold cross-validation, AUC values of less than 0.3 can be observed on random datasets rather than the expected 0.5. Further experiments on the van 't Veer breast cancer dataset show these biases exist in practice. CONCLUSION: Stratification bias can substantially affect several performance measures. In computing the AUC, the strategy of pooling the test samples from the various folds of cross-validation can lead to large biases; computing it as the average of per-fold estimates avoids this bias and is thus the recommended approach. As a more general solution applicable to other performance measures, we show that stratified repeated holdout and a modified version of k-fold cross-validation, balanced, stratified cross-validation and balanced leave-one-out cross-validation, avoids the bias. Therefore for model selection and evaluation of microarray and other small biological datasets, these methods should be used and unstratified versions avoided. In particular, the commonly used (unbalanced) leave-one-out cross-validation should not be used to estimate AUC for small datasets.
  • Item
    Thumbnail Image
    BioCaster: detecting public health rumors with a Web-based text mining system.
    Collier, N ; Doan, S ; Kawazoe, A ; Goodwin, RM ; Conway, M ; Tateno, Y ; Ngo, Q-H ; Dien, D ; Kawtrakul, A ; Takeuchi, K ; Shigematsu, M ; Taniguchi, K (Oxford University Press (OUP), 2008-12-15)
    SUMMARY: BioCaster is an ontology-based text mining system for detecting and tracking the distribution of infectious disease outbreaks from linguistic signals on the Web. The system continuously analyzes documents reported from over 1700 RSS feeds, classifies them for topical relevance and plots them onto a Google map using geocoded information. The background knowledge for bridging the gap between Layman's terms and formal-coding systems is contained in the freely available BioCaster ontology which includes information in eight languages focused on the epidemiological role of pathogens as well as geographical locations with their latitudes/longitudes. The system consists of four main stages: topic classification, named entity recognition (NER), disease/location detection and event recognition. Higher order event analysis is used to detect more precisely specified warning signals that can then be notified to registered users via email alerts. Evaluation of the system for topic recognition and entity identification is conducted on a gold standard corpus of annotated news articles. AVAILABILITY: The BioCaster map and ontology are freely available via a web portal at http://www.biocaster.org.
  • Item
    Thumbnail Image
    Fast and accurate protein substructure searching with simulated annealing and GPUs
    Stivala, AD ; Stuckey, PJ ; Wirth, AI (BMC, 2010-09-03)
    BACKGROUND: Searching a database of protein structures for matches to a query structure, or occurrences of a structural motif, is an important task in structural biology and bioinformatics. While there are many existing methods for structural similarity searching, faster and more accurate approaches are still required, and few current methods are capable of substructure (motif) searching. RESULTS: We developed an improved heuristic for tableau-based protein structure and substructure searching using simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods. Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU). CONCLUSIONS: The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-based structure search with simulated annealing, making it one of the fastest available methods. To the best of our knowledge, this is the first application of a GPU to the protein structural search problem.
  • Item
    Thumbnail Image
    Boolean versus ranked querying for biomedical systematic reviews
    Karimi, S ; Pohl, S ; Scholer, F ; Cavedon, L ; Zobel, J (BMC, 2010-10-12)
    BACKGROUND: The process of constructing a systematic review, a document that compiles the published evidence pertaining to a specified medical topic, is intensely time-consuming, often taking a team of researchers over a year, with the identification of relevant published research comprising a substantial portion of the effort. The standard paradigm for this information-seeking task is to use Boolean search; however, this leaves the user(s) the requirement of examining every returned result. Further, our experience is that effective Boolean queries for this specific task are extremely difficult to formulate and typically require multiple iterations of refinement before being finalized. METHODS: We explore the effectiveness of using ranked retrieval as compared to Boolean querying for the purpose of constructing a systematic review. We conduct a series of experiments involving ranked retrieval, using queries defined methodologically, in an effort to understand the practicalities of incorporating ranked retrieval into the systematic search task. RESULTS: Our results show that ranked retrieval by itself is not viable for this search task requiring high recall. However, we describe a refinement of the standard Boolean search process and show that ranking within a Boolean result set can improve the overall search performance by providing early indication of the quality of the results, thereby speeding up the iterative query-refinement process. CONCLUSIONS: Outcomes of experiments suggest that an interactive query-development process using a hybrid ranked and Boolean retrieval system has the potential for significant time-savings over the current search process in the systematic reviewing.
  • Item
    Thumbnail Image
    Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context
    Abraham, G ; Kowalczyk, A ; Loi, S ; Haviv, I ; Zobel, J (BMC, 2010-05-25)
    BACKGROUND: Different microarray studies have compiled gene lists for predicting outcomes of a range of treatments and diseases. These have produced gene lists that have little overlap, indicating that the results from any one study are unstable. It has been suggested that the underlying pathways are essentially identical, and that the expression of gene sets, rather than that of individual genes, may be more informative with respect to prognosis and understanding of the underlying biological process. RESULTS: We sought to examine the stability of prognostic signatures based on gene sets rather than individual genes. We classified breast cancer cases from five microarray studies according to the risk of metastasis, using features derived from predefined gene sets. The expression levels of genes in the sets are aggregated, using what we call a set statistic. The resulting prognostic gene sets were as predictive as the lists of individual genes, but displayed more consistent rankings via bootstrap replications within datasets, produced more stable classifiers across different datasets, and are potentially more interpretable in the biological context since they examine gene expression in the context of their neighbouring genes in the pathway. In addition, we performed this analysis in each breast cancer molecular subtype, based on ER/HER2 status. The prognostic gene sets found in each subtype were consistent with the biology based on previous analysis of individual genes. CONCLUSIONS: To date, most analyses of gene expression data have focused at the level of the individual genes. We show that a complementary approach of examining the data using predefined gene sets can reduce the noise and could provide increased insight into the underlying biological pathways.
  • Item
    Thumbnail Image
    A fast indexing approach for protein structure comparison
    Zhang, L ; Bailey, J ; Konagurthu, AS ; Ramamohanarao, K (BMC, 2010)
    BACKGROUND: Protein structure comparison is a fundamental task in structural biology. While the number of known protein structures has grown rapidly over the last decade, searching a large database of protein structures is still relatively slow using existing methods. There is a need for new techniques which can rapidly compare protein structures, whilst maintaining high matching accuracy. RESULTS: We have developed IR Tableau, a fast protein comparison algorithm, which leverages the tableau representation to compare protein tertiary structures. IR tableau compares tableaux using information retrieval style feature indexing techniques. Experimental analysis on the ASTRAL SCOP protein structural domain database demonstrates that IR Tableau achieves two orders of magnitude speedup over the search times of existing methods, while producing search results of comparable accuracy. CONCLUSION: We show that it is possible to obtain very significant speedups for the protein structure comparison problem, by employing an information retrieval style approach for indexing proteins. The comparison accuracy achieved is also strong, thus opening the way for large scale processing of very large protein structure databases.
  • Item
    Thumbnail Image
    A UIMA wrapper for the NCBO annotator
    Roeder, C ; Jonquet, C ; Shah, NH ; Baumgartner, WA ; Verspoor, K ; Hunter, L (OXFORD UNIV PRESS, 2010-07-15)
    SUMMARY: The Unstructured Information Management Architecture (UIMA) framework and web services are emerging as useful tools for integrating biomedical text mining tools. This note describes our work, which wraps the National Center for Biomedical Ontology (NCBO) Annotator-an ontology-based annotation service-to make it available as a component in UIMA workflows. AVAILABILITY: This wrapper is freely available on the web at http://bionlp-uima.sourceforge.net/ as part of the UIMA tools distribution from the Center for Computational Pharmacology (CCP) at the University of Colorado School of Medicine. It has been implemented in Java for support on Mac OS X, Linux and MS Windows.
  • Item
    Thumbnail Image
    Computing folding pathways between RNA secondary structures
    Dotu, I ; Lorenz, WA ; Van Hentenryck, P ; Clote, P (OXFORD UNIV PRESS, 2010-03)
    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.
  • Item
    Thumbnail Image
    Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks
    Abi-Haidar, A ; Kaur, J ; Maguitman, A ; Radivojac, P ; Rechtsteiner, A ; Verspoor, K ; Wang, Z ; Rocha, LM (BMC, 2008)
    BACKGROUND: We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks. RESULTS: Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. CONCLUSION: Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
  • Item
    Thumbnail Image
    Ontology quality assurance through analysis of term transformations
    Verspoor, K ; Dvorkin, D ; Cohen, KB ; Hunter, L (OXFORD UNIV PRESS, 2009-06-15)
    MOTIVATION: It is important for the quality of biological ontologies that similar concepts be expressed consistently, or univocally. Univocality is relevant for the usability of the ontology for humans, as well as for computational tools that rely on regularity in the structure of terms. However, in practice terms are not always expressed consistently, and we must develop methods for identifying terms that are not univocal so that they can be corrected. RESULTS: We developed an automated transformation-based clustering methodology for detecting terms that use different linguistic conventions for expressing similar semantics. These term sets represent occurrences of univocality violations. Our method was able to identify 67 examples of univocality violations in the Gene Ontology. AVAILABILITY: The identified univocality violations are available upon request. We are preparing a release of an open source version of the software to be available at http://bionlp.sourceforge.net.