Computing and Information Systems - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Literature consistency of bioinformatics sequence databases is effective for assessing record quality
    Bouadjenek, MR ; Verspoor, K ; Zobel, J (OXFORD UNIV PRESS, 2017-03-18)
    UNLABELLED: Bioinformatics sequence databases such as Genbank or UniProt contain hundreds of millions of records of genomic data. These records are derived from direct submissions from individual laboratories, as well as from bulk submissions from large-scale sequencing centres; their diversity and scale means that they suffer from a range of data quality issues including errors, discrepancies, redundancies, ambiguities, incompleteness and inconsistencies with the published literature. In this work, we seek to investigate and analyze the data quality of sequence databases from the perspective of a curator, who must detect anomalous and suspicious records. Specifically, we emphasize the detection of inconsistent records with respect to the literature. Focusing on GenBank, we propose a set of 24 quality indicators, which are based on treating a record as a query into the published literature, and then use query quality predictors. We then carry out an analysis that shows that the proposed quality indicators and the quality of the records have a mutual relationship, in which one depends on the other. We propose to represent record-literature consistency as a vector of these quality indicators. By reducing the dimensionality of this representation for visualization purposes using principal component analysis, we show that records which have been reported as inconsistent with the literature fall roughly in the same area, and therefore share similar characteristics. By manually analyzing records not previously known to be erroneous that fall in the same area than records know to be inconsistent, we show that one record out of four is inconsistent with respect to the literature. This high density of inconsistent record opens the way towards the development of automatic methods for the detection of faulty records. We conclude that literature inconsistency is a meaningful strategy for identifying suspicious records. DATABASE URL: https://github.com/rbouadjenek/DQBioinformatics.
  • Item
    Thumbnail Image
    Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study
    Chen, Q ; Zobel, J ; Verspoor, K (OXFORD UNIV PRESS, 2017-01-10)
    GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a period of decades. As a consequence, they contain a great many duplicates, redundancies and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics databases has not been carefully assessed, making it difficult to judge the value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in bioinformatics databases, through a retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting of duplicates manually identified in INSDC-a dataset of 67 888 merged groups with 111 823 duplicate pairs across 21 organisms from INSDC databases - in terms of the prevalence, types and impacts of duplicates. (2) We categorize duplicates at both sequence and annotation level, with supporting quantitative statistics, showing that different organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of duplicates has practical impact via a simple case study on duplicates, in terms of GC content and melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of duplication in biological databases.Database URL: the merged records are available at https://cloudstor.aarnet.edu.au/plus/index.php/s/Xef2fvsebBEAv9w.
  • Item
    Thumbnail Image
    Multi-field query expansion is effective for biomedical dataset retrieval
    Bouadjenek, MR ; Verspoor, K (OXFORD UNIV PRESS, 2017-09-07)
    In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one.
  • Item
    Thumbnail Image
    Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles
    Cohen, KB ; Lanfranchi, A ; Choi, MJ-Y ; Bada, M ; Baumgartner, WA ; Panteleyeva, N ; Verspoor, K ; Palmer, M ; Hunter, LE (BMC, 2017-08-17)
    BACKGROUND: Coreference resolution is the task of finding strings in text that have the same referent as other strings. Failures of coreference resolution are a common cause of false negatives in information extraction from the scientific literature. In order to better understand the nature of the phenomenon of coreference in biomedical publications and to increase performance on the task, we annotated the Colorado Richly Annotated Full Text (CRAFT) corpus with coreference relations. RESULTS: The corpus was manually annotated with coreference relations, including identity and appositives for all coreferring base noun phrases. The OntoNotes annotation guidelines, with minor adaptations, were used. Interannotator agreement ranges from 0.480 (entity-based CEAF) to 0.858 (Class-B3), depending on the metric that is used to assess it. The resulting corpus adds nearly 30,000 annotations to the previous release of the CRAFT corpus. Differences from related projects include a much broader definition of markables, connection to extensive annotation of several domain-relevant semantic classes, and connection to complete syntactic annotation. Tool performance was benchmarked on the data. A publicly available out-of-the-box, general-domain coreference resolution system achieved an F-measure of 0.14 (B3), while a simple domain-adapted rule-based system achieved an F-measure of 0.42. An ensemble of the two reached F of 0.46. Following the IDENTITY chains in the data would add 106,263 additional named entities in the full 97-paper corpus, for an increase of 76% percent in the semantic classes of the eight ontologies that have been annotated in earlier versions of the CRAFT corpus. CONCLUSIONS: The project produced a large data set for further investigation of coreference and coreference resolution in the scientific literature. The work raised issues in the phenomenon of reference in this domain and genre, and the paper proposes that many mentions that would be considered generic in the general domain are not generic in the biomedical domain due to their referents to specific classes in domain-specific ontologies. The comparison of the performance of a publicly available and well-understood coreference resolution system with a domain-adapted system produced results that are consistent with the notion that the requirements for successful coreference resolution in this genre are quite different from those of the general domain, and also suggest that the baseline performance difference is quite large.
  • Item
    Thumbnail Image
    Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
    Hameed, PN ; Verspoor, K ; Kusljic, S ; Halgamuge, S (BMC, 2017-03-01)
    BACKGROUND: Investigating and understanding drug-drug interactions (DDIs) is important in improving the effectiveness of clinical care. DDIs can occur when two or more drugs are administered together. Experimentally based DDI detection methods require a large cost and time. Hence, there is a great interest in developing efficient and useful computational methods for inferring potential DDIs. Standard binary classifiers require both positives and negatives for training. In a DDI context, drug pairs that are known to interact can serve as positives for predictive methods. But, the negatives or drug pairs that have been confirmed to have no interaction are scarce. To address this lack of negatives, we introduce a Positive-Unlabeled Learning method for inferring potential DDIs. RESULTS: The proposed method consists of three steps: i) application of Growing Self Organizing Maps to infer negatives from the unlabeled dataset; ii) using a pairwise similarity function to quantify the overlap between individual features of drugs and iii) using support vector machine classifier for inferring DDIs. We obtained 6036 DDIs from DrugBank database. Using the proposed approach, we inferred 589 drug pairs that are likely to not interact with each other; these drug pairs are used as representative data for the negative class in binary classification for DDI prediction. Moreover, we classify the predicted DDIs as Cytochrome P450 (CYP) enzyme-Dependent and CYP-Independent interactions invoking their locations on the Growing Self Organizing Map, due to the particular importance of these enzymes in clinically significant interaction effects. Further, we provide a case study on three predicted CYP-Dependent DDIs to evaluate the clinical relevance of this study. CONCLUSION: Our proposed approach showed an absolute improvement in F1-score of 14 and 38% in comparison to the method that randomly selects unlabeled data points as likely negatives, depending on the choice of similarity function. We inferred 5300 possible CYP-Dependent DDIs and 592 CYP-Independent DDIs with the highest posterior probabilities. Our discoveries can be used to improve clinical care as well as the research outcomes of drug development.
  • Item
    Thumbnail Image
    CommViz: Visualization of semantic patterns in large social communication networks
    Verspoor, K ; Ofoghi, B ; Robles Granda, M (SAGE Publications, 2017-02-01)
    We introduce CommViz, an information visualization tool that enables complex communication networks to be explored, exposing trends and patterns in the data at a glance. We adapt a visualization approach known as hive plots to reflect the semantic structure of the networks, a generalization we call semantic hive plots. The method efficiently organizes and provides insight into complex, high-dimensional communication data such as email and messages on social media. We present the architecture of the CommViz tool and its application to the Enron email corpus as a case study, demonstrating how the structure of the visualization enables investigation of patterns and relationships in a large set of messages. We also provide a user study performed with Amazon Mechanical Turk that shows the value of the tool for certain complex data interrogations and further show how the incorporation of semantic structure on semantic coordinates can also be applied to parallel coordinates visualization. The integration of the social network characteristics with semantic attributes of the underlying data in a single visualization is, to our knowledge, a novel contribution of the work. The tool can be accessed at http://commviz.eng.unimelb.edu.au. Code is available at https://bitbucket.org/readbiomed/commviz. The Enron email corpus is available from http://bailando.sims.berkeley.edu/enron_email.html.