Melbourne Veterinary School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Exercise-induced inhibition of remodelling is focally offset with fatigue fracture in racehorses
    Whitton, RC ; Mirams, M ; Mackie, EJ ; Anderson, GA ; Seeman, E (SPRINGER LONDON LTD, 2013-07)
    UNLABELLED: Bone remodelling is inhibited by high repetitive loading. However, in subchondral bone of racehorses in training, eroded surface doubled in association with fatigue fracture and there was greater surrounding trabecular bone volume suggesting trabecular modelling unloads the bone focally, allowing damage repair by remodelling. INTRODUCTION: Remodelling replaces damaged bone with new bone but is suppressed during high magnitude repetitive loading when damage is most likely. However, in cortical bone of racehorses, at sites of fatigue fracture, focal porosity, consistent with remodelling, is observed in proportion to the extent of surrounding callus. Focal areas of porosity are also observed at sites of fatigue damage in subchondral bone. We hypothesised that fatigued subchondral bone, like damaged cortical bone, is remodelled focally in proportion to the modelling of surrounding trabecular bone. METHODS: Eroded and mineralizing surfaces and bone area were measured using backscattered scanning electron microscopy of post-mortem specimens of the distal third metacarpal bone in 11 racehorses with condylar fractures (cases) and eight racehorses in training without fractures (controls). RESULTS: Cases had a two-fold greater eroded surface per unit area at the fracture site than controls (0.81 ± 0.10 vs. 0.40 ± 0.12 mm(-1), P = 0.021) but not at an adjacent site (0.22 ± 0.09 vs. 0.30 ± 0.11 mm(-1), P = 0.59). Area fraction of surrounding trabecular bone was higher in cases than controls (81 ± 2 vs. 72 ± 2 %, P = 0.0020) and the eroded surface at the fracture site correlated with the surrounding trabecular area (adjusted R (2) = 0.63, P = 0.0010). CONCLUSION: In conclusion, exercise-induced inhibition of remodelling is offset at sites of fatigue fracture. Modelling of trabecular bone may contribute to unloading these regions, allowing repair by remodelling.
  • Item
    Thumbnail Image
    Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions.
    Hussey, GS ; Goehring, LS ; Lunn, DP ; Hussey, SB ; Huang, T ; Osterrieder, N ; Powell, C ; Hand, J ; Holz, C ; Slater, J (Springer Science and Business Media LLC, 2013-12-05)
    Equine herpesvirus myeloencephalitis (EHM) remains one of the most devastating manifestations of equine herpesvirus type 1 (EHV-1) infection but our understanding of its pathogenesis remains rudimentary, partly because of a lack of adequate experimental models. EHV-1 infection of the ocular vasculature may offer an alternative model as EHV-1-induced chorioretinopathy appears to occur in a significant number of horses, and the pathogenesis of EHM and ocular EHV-1 may be similar. To investigate the potential of ocular EHV-1 as a model for EHM, and to determine the frequency of ocular EHV-1, our goal was to study: (1) Dissemination of virus following acute infection, (2) Development and frequency of ocular lesions following infection, and (3) Utility of a GFP-expressing virus for localization of the virus in vivo. Viral antigen could be detected following acute infection in ocular tissues and the central nervous system (experiment 1). Furthermore, EHV-1 infection resulted in multifocal choroidal lesions in 90% (experiment 2) and 50% (experiment 3) of experimentally infected horses, however ocular lesions did not appear in vivo until between 3 weeks and 3 months post-infection. Taken together, the timing of the appearance of lesions and their ophthalmoscopic features suggest that their pathogenesis may involve ischemic injury to the chorioretina following viremic delivery of virus to the eye, mirroring the vascular events that result in EHM. In summary, we show that the frequency of ocular EHV-1 is 50-90% following experimental infection making this model attractive for testing future vaccines or therapeutics in an immunologically relevant age group.
  • Item
    No Preview Available
    SYSTEMIC INFECTION DUE TO CANDIDA PARAPSILOSIS IN A DOMESTIC FERRET (MUSTELA PUTORILIS FURO)
    Mancinelli, E ; Meredith, AL ; Stidworthy, MF (ELSEVIER SCIENCE INC, 2014-01)
    An 18-month-old castrated male ferret (Mustela putorius furo) was presented to the veterinary hospital for acute collapse but died despite initiation of emergency treatment. The body was submitted for a complete postmortem examination. The pathologist determined the ferret was suffering from severe necrotizing encephalitis, necrogranulomatous mediastinal lymphadenitis, and ulcerative dermatitis attributable to systemic Candida parapsilosis. This is the first report of systemic Candida parapsilosis in a ferret.
  • Item
    Thumbnail Image
    KCa3.1 Channel-Blockade Attenuates Airway Pathophysiology in a Sheep Model of Chronic Asthma
    Van Der Velden, J ; Sum, G ; Barker, D ; Koumoundouros, E ; Barcham, G ; Wulff, H ; Castle, N ; Bradding, P ; Snibson, K ; Idzko, M (PUBLIC LIBRARY SCIENCE, 2013-06-24)
    BACKGROUND: The Ca(2+)-activated K(+) channel K(Ca)3.1 is expressed in several structural and inflammatory airway cell types and is proposed to play an important role in the pathophysiology of asthma. The aim of the current study was to determine whether inhibition of K(Ca)3.1 modifies experimental asthma in sheep. METHODOLOGY AND PRINCIPAL FINDINGS: Atopic sheep were administered either 30 mg/kg Senicapoc (ICA-17073), a selective inhibitor of the K(Ca)3.1-channel, or vehicle alone (0.5% methylcellulose) twice daily (orally). Both groups received fortnightly aerosol challenges with house dust mite allergen for fourteen weeks. A separate sheep group received no allergen challenges or drug treatment. In the vehicle-control group, twelve weeks of allergen challenges resulted in a 60±19% increase in resting airway resistance, and this was completely attenuated by treatment with Senicapoc (0.25±12%; n = 10, P = 0.0147). The vehicle-control group had a peak-early phase increase in lung resistance of 82±21%, and this was reduced by 58% with Senicapoc treatment (24±14%; n = 10, P = 0.0288). Senicapoc-treated sheep also demonstrated reduced airway hyperresponsiveness, requiring a significantly higher dose of carbachol to increase resistance by 100% compared to allergen-challenged vehicle-control sheep (20±5 vs. 52±18 breath-units of carbachol; n = 10, P = 0.0340). Senicapoc also significantly reduced eosinophil numbers in bronchoalveolar lavage taken 48 hours post-allergen challenge, and reduced vascular remodelling. CONCLUSIONS: These findings suggest that K(Ca)3.1-activity contributes to allergen-induced airway responses, inflammation and vascular remodelling in a sheep model of asthma, and that inhibition of K(Ca)3.1 may be an effective strategy for blocking allergen-induced airway inflammation and hyperresponsiveness in humans.
  • Item
    Thumbnail Image
    Cholinergic connectivity: it's implications for psychiatric disorders
    Scarr, E ; Gibbons, AS ; Neo, J ; Udawela, M ; Dean, B (FRONTIERS MEDIA SA, 2013-05-03)
    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
  • Item
    Thumbnail Image
    Potential Molecular and Cellular Mechanism of Psychotropic Drugs
    Seo, MS ; Scarr, E ; Lai, C-Y ; Dean, B (KOREAN COLL NEUROPSYCHOPHARMACOLOGY, 2014-08)
    Psychiatric disorders are among the most debilitating of all medical illnesses. Whilst there are drugs that can be used to treat these disorders, they give sub-optimal recovery in many people and a significant number of individuals do not respond to any treatments and remain treatment resistant. Surprisingly, the mechanism by which psychotropic drugs cause their therapeutic benefits remain unknown but likely involves the underlying molecular pathways affected by the drugs. Hence, in this review, we have focused on recent findings on the molecular mechanism affected by antipsychotic, mood stabilizing and antidepressant drugs at the levels of epigenetics, intracellular signalling cascades and microRNAs. We posit that understanding these important interactions will result in a better understanding of how these drugs act which in turn may aid in considering how to develop drugs with better efficacy or increased therapeutic reach.
  • Item
    Thumbnail Image
    Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma
    El Mays, TY ; Choudhury, P ; Leigh, R ; Koumoundouros, E ; Van der Velden, J ; Shrestha, G ; Pieron, CA ; Dennis, JH ; Green, FHY ; Snibson, KJ (BIOMED CENTRAL LTD, 2014-09-16)
    BACKGROUND: The low toxicity of perfluorocarbons (PFCs), their high affinity for respiratory gases and their compatibility with lung surfactant have made them useful candidates for treating respiratory diseases such as adult respiratory distress syndrome. We report results for treating acute allergic and non-allergic bronchoconstriction in sheep using S-1226 (a gas mixture containing carbon dioxide and small volumes of nebulized perflubron). The carbon dioxide, which is highly soluble in perflubron, was used to relax airway smooth muscle. METHODS: Sheep previously sensitized to house dust mite (HDM) were challenged with HDM aerosols to induce early asthmatic responses. At the maximal responses (characterised by an increase in lung resistance), the sheep were either not treated or treated with one of the following; nebulized S-1226 (perflubron + 12% CO2), nebulized perflubron + medical air, 12% CO2, salbutamol or medical air. Lung resistance was monitored for up to 20 minutes after cessation of treatment. RESULTS: Treatment with S-1226 for 2 minutes following HDM challenge resulted in a more rapid, more profound and more prolonged decline in lung resistance compared with the other treatment interventions. Video bronchoscopy showed an immediate and complete (within 5 seconds) re-opening of MCh-constricted airways following treatment with S-1226. CONCLUSIONS: S-1226 is a potent and rapid formulation for re-opening constricted airways. Its mechanism(s) of action are unknown. The formulation has potential as a rescue treatment for acute severe asthma.
  • Item
    Thumbnail Image
    Oriental theileriosis in dairy cows causes a significant milk production loss
    Perera, PK ; Gasser, RB ; Firestone, SM ; Anderson, GA ; Malmo, J ; Davis, G ; Beggs, DS ; Jabbar, A (BIOMED CENTRAL LTD, 2014-02-19)
    BACKGROUND: Oriental theileriosis is a tick-borne, protozoan disease of cattle caused by members of the Theileria orientalis-complex. Recent outbreaks of this disease in eastern Australia have caused major concerns to the dairy and beef farming communities, but there are no published studies of the economic impact of this disease. On a farm in Victoria, Australia, we assessed whether oriental theileriosis has an impact on milk production and reproductive performance in dairy cows. METHODS: Blood samples collected from all 662 cows on the farm were tested using an established molecular test. For individual cows, milk production and reproductive performance data were collected. A clinical assessment of individual cows was performed. Based on clinical findings and molecular test results, the following groups of cows were classified: group 1, with cardinal clinical signs of oriental theileriosis and molecular test-positive for T. orientalis; group 2, with mild or suspected signs of theileriosis and test-positive; group 3, with no clinical signs and test-positive; and group 4, with no clinical signs and test-negative. Milk production and reproductive performance data for groups 1, 2 and 3 were each compared with those for group 4 using linear and logistic regression analyses, respectively. RESULTS: At 100 days of lactation, group 1 cows produced significantly less milk (288 l; P = 0.001), milk fat (16.8 kg; P < 0.001) and milk protein (12.6 kg; P < 0.001) compared with group 4. At this lactation point, group 2 also produced significantly less milk fat (13.6 kg; P = 0.002) and milk protein (8.6 kg; P = 0.005) than group 4. At 305 days of lactation, group 1 cows produced significantly less milk (624 l; P = 0.004), milk fat (42.9 kg; P < 0.001) and milk protein (26.0 kg; P < 0.001) compared with group 4 cows. Group 2 cows also produced significantly less milk fat (21.2 kg; P = 0.033) at this lactation point. No statistically significant difference in reproductive performance was found upon pairwise comparisons of groups 1-3 with group 4 cows. CONCLUSIONS: The present findings demonstrate that clinical oriental theileriosis can cause significant milk production losses in dairy cattle.
  • Item
    Thumbnail Image
    Impacts of the Callipyge Mutation on Ovine Plasma Metabolites and Muscle Fibre Type
    Li, J ; Greenwood, PL ; Cockett, NE ; Hadfield, TS ; Vuocolo, T ; Byrne, K ; White, JD ; Tellam, RL ; Schirra, HJ ; Motta, A (PUBLIC LIBRARY SCIENCE, 2014-06-17)
    The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.
  • Item
    Thumbnail Image
    Identification of novel anelloviruses with broad diversity in UK rodents
    Nishiyama, S ; Dutia, BM ; Stewart, JP ; Meredith, AL ; Shaw, DJ ; Simmonds, P ; Sharp, CP (MICROBIOLOGY SOC, 2014-07)
    Anelloviruses are a family of small circular ssDNA viruses with a vast genetic diversity. Human infections with the prototype anellovirus, torque teno virus (TTV), are ubiquitous and related viruses have been described in a number of other mammalian hosts. Despite over 15 years of investigation, there is still little known about the pathogenesis and possible disease associations of anellovirus infections, arising in part due to the lack of a robust cell culture system for viral replication or tractable small-animal model. We report the identification of diverse anelloviruses in several species of wild rodents. The viruses are highly prevalent in wood mice (Apodemus sylvaticus) and field voles (Microtus agrestis), detectable at a low frequency in bank voles (Myodes glareolus), but absent from house mice (Mus musculus). The viruses identified have a genomic organization consistent with other anelloviruses, but form two clear phylogenetic groups that are as distinct from each other as from defined genera.