Melbourne Veterinary School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Cholinergic connectivity: it's implications for psychiatric disorders
    Scarr, E ; Gibbons, AS ; Neo, J ; Udawela, M ; Dean, B (FRONTIERS MEDIA SA, 2013-05-03)
    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
  • Item
    Thumbnail Image
    Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders
    Dean, B ; Gibbons, AS ; Tawadros, N ; Brooks, L ; Everall, IP ; Scarr, E (NATURE PUBLISHING GROUP, 2013-07)
    The growing body of evidence implicating tumor necrosis factor-α (TNFα) in the pathophysiology of psychiatric disorders led us to measure levels of that protein in the cortex of subjects with major depressive disorders (MDD). Having reported an increase (458%) in the levels of the transmembrane (tmTNFα), but not the soluble (sTNFα), form of the protein in Brodmann's area (BA) 46, but not 24, in people with the disorder, we decided to examine additional components of TNFα-related pathways in the same regions in people with MDD and extend our studies to the same cortical regions of people with schizophrenia (Sz) and bipolar disorders (BD). Using postmortem tissue, western blots and quantitative PCR, we have now shown there is a significant increase (305%) in tmTNFα in Brodmann's area 24, but not 46, from subjects with BD, and that levels of the protein were not altered in Sz. Levels of sTNFα were not altered in BD or Sz. In addition, we have shown that levels of TNF receptor 1 (TNFR1) mRNA are increased in BA 24 (53%) and BA 46 (82%) in people with Sz, whereas levels of TNFR2 mRNA was decreased in BA 46 in people with mood disorders (MDD=-51%; BD=-67%). Levels of proteins frequently used as surrogate markers of neuronal, astrocytic and microglia numbers, as well as levels of the pro-inflammatory marker (interleukin 1β), were not changed in the cortex of people with mood disorders. Our data suggest there are differential changes in TNFα-related markers in the cortex of people with MDD, BD and Sz that may not be related to classical inflammation and may cause changes in different TNFα-related signaling pathways.