Melbourne Veterinary School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Antimicrobial Prescribing in Dogs and Cats in Australia: Results of the Australasian Infectious Disease Advisory Panel Survey
    Hardefeldt, LY ; Holloway, S ; Trott, DJ ; Shipstone, M ; Barrs, VR ; Malik, R ; Burrows, M ; Armstrong, S ; Browning, GF ; Stevenson, M (WILEY, 2017-07)
    BACKGROUND: Investigations of antimicrobial use in companion animals are limited. With the growing recognition of the need for improved antimicrobial stewardship, there is urgent need for more detailed understanding of the patterns of antimicrobial use in this sector. OBJECTIVES: To investigate antimicrobial use for medical and surgical conditions in dogs and cats by Australian veterinarians. METHODS: A cross-sectional study was performed over 4 months in 2011. Respondents were asked about their choices of antimicrobials for empirical therapy of diseases in dogs and cats, duration of therapy, and selection based on culture and susceptibility testing, for common conditions framed as case scenarios: 11 medical, 2 surgical, and 8 dermatological. RESULTS: A total of 892 of the 1,029 members of the Australian veterinary profession that completed the survey satisfied the selection criteria. Empirical antimicrobial therapy was more common for acute conditions (76%) than chronic conditions (24%). Overall, the most common antimicrobial classes were potentiated aminopenicillins (36%), fluoroquinolones (15%), first- and second-generation cephalosporins (14%), and tetracyclines (11%). Third-generation cephalosporins were more frequently used in cats (16%) compared to dogs (2%). Agreement with Australasian Infectious Disease Advisory Panel (AIDAP) guidelines (generated subsequently) was variable ranging from 0 to 69% between conditions. CONCLUSIONS AND CLINICAL IMPORTANCE: Choice of antimicrobials by Australian veterinary practitioners was generally appropriate, with relatively low use of drugs of high importance, except for the empirical use of fluoroquinolones in dogs, particularly for otitis externa and 3rd-generation cephalosporins in cats. Future surveys will determine whether introduction of the 2013 AIDAP therapeutic guidelines has influenced prescribing habits.
  • Item
    Thumbnail Image
    Low genetic diversity among historical and contemporary clinical isolates of felid herpesvirus 1
    Vaz, PK ; Job, N ; Horsington, J ; Ficorilli, N ; Studdert, MJ ; Hartley, CA ; Gilkerson, JR ; Browning, GF ; Devlin, JM (BIOMED CENTRAL LTD, 2016-09-02)
    BACKGROUND: Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. RESULTS: The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0-0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. CONCLUSIONS: The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies.
  • Item
    No Preview Available
    Evidence of widespread natural recombination among field isolates of equine herpesvirus 4 but not among field isolates of equine herpesvirus 1
    Vaz, PK ; Horsington, J ; Hartley, CA ; Browning, GF ; Ficorilli, NP ; Studdert, MJ ; Gilkerson, JR ; Devlin, JM (SOC GENERAL MICROBIOLOGY, 2016-03)
    Recombination in alphaherpesviruses allows evolution to occur in viruses that have an otherwise stable DNA genome with a low rate of nucleotide substitution. High-throughput sequencing of complete viral genomes has recently allowed natural (field) recombination to be studied in a number of different alphaherpesviruses, however, such studies have not been applied to equine herpesvirus 1 (EHV-1) or equine herpesvirus 4 (EHV-4). These two equine alphaherpesviruses are genetically similar, but differ in their pathogenesis and epidemiology. Both cause economically significant disease in horse populations worldwide. This study used high-throughput sequencing to determine the full genome sequences of EHV-1 and EHV-4 isolates (11 and 14 isolates, respectively) from Australian or New Zealand horses. These sequences were then analysed and examined for evidence of recombination. Evidence of widespread recombination was detected in the genomes of the EHV-4 isolates. Only one potential recombination event was detected in the genomes of the EHV-1 isolates, even when the genomes from an additional 11 international EHV-1 isolates were analysed. The results from this study reveal another fundamental difference between the biology of EHV-1 and EHV-4. The results may also be used to help inform the future safe use of attenuated equine herpesvirus vaccines.